Formulation and Characterization of Polypropylene Composites Alkali Treated Bagasse Fiber

Article Preview

Abstract:

Polymer composites reinforced with natural fiber that were obtained as industrial wastes, are of particular interest due to both the environmental benefits and economical advantages. In the present work sugarcane bagasse fibers, obtained as a waste from sugar and ethanol production, were incorporated in an amount of 25wt% into a polypropylene matrix. These fibers were previously alkali treated with NaOH to improve their adherence to the composite matrix. Thermal analyses were conducted in both types of composites, with untreated fibers and with alkali treated fiber. The result indicated that the alkali treatment improves the compatibility between the bagasse fiber and the polypropylene matrix, which then provides more thermal resistance.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 775-776)

Pages:

319-324

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Bledzki and J. Gassan: Prog. Polym. Sci. Vol. 4 (1999), p.221.

Google Scholar

[2] A.K. Mohanty, M. Misra and G. Hinrichsen: Macromol. Mat. Eng. Vol. 276/277 (2000), p.1.

Google Scholar

[3] D Nabi Sahed and J.P. Jog: Adv. Polym. Technol. Vol. 18(4) (1999), p.351.

Google Scholar

[4] S.J. Eichhorn, C.A. Baillie, N. Zafeiropoulos, L.Y. Mwaikambo, M.P. Ansell and A. Dufresne: J. Mat. Sci. Vol. 36 (2001), p.2107.

Google Scholar

[5] A.K. Mohanty, M. Misra and L.T. Drzal: J. Polym. Environ. Vol. 10 (2002), p.19.

Google Scholar

[6] A.N. Netravali and S. Chabba: Mater Today. Vol. 6 (2003), p.22.

Google Scholar

[7] J. Crocker: Mater. Technol. Vol. 2-3 (2008), p.174.

Google Scholar

[8] M.J. John and S. Thomas: Carbohydr. Polym. Vol. 71 (2008), p.343.

Google Scholar

[9] S. N Monteiro, F.P.D. Lopes, A.S. Ferreira and D.C. O Nascimento: JOM. Vol. 61 (2009), p.17.

Google Scholar

[10] S.N. Monteiro, F.P.D. Lopes, A.P. Barbosa, A. B. Bevitori, I. L Silva and,L. L Costa: Metal. Mater. Trans A Vol. 42 (2011), p.2963.

Google Scholar

[11] O. Faruka, A. K. Bledzki, H-P. Fink and M. Sain: Progress in Polymer Science Vol. 37 (2012), p.1552.

Google Scholar

[12] S. Kalia, B.S. Kaith and I. Kaurs: Cellulose Fibers: Bio and Nano-Polymer Composites. (New York: Springer, 2011).

Google Scholar

[13] J. Holbery and D. Houston: JOM Vol. 58 (2006), p.80.

Google Scholar

[14] R. Zah, R. Hischier, A.L. Leão and I. Brown: J. Clean Prod. Vol. 15 (2007), p.1032.

Google Scholar

[15] K.G. Satyanarayana, J.L. Guimarães and F. Wypych: Composites Part A Vol. 38 (2007), p.1694.

Google Scholar

[16] Available at: http: /www. ibge. gov. br/home/estatistica/indicadores/agropecuaria/lspa/lspa 2012 10 5. shtm (in Portuguese).

Google Scholar

[17] S.N. Monteiro, R.J.S. Rodriguez, M.V. Souza and J.R.M. d'Almeida: Adv. Performance Mater. Vol. 5 (1998), p.183.

Google Scholar

[18] C.G. Mothé, C.R. Araujo, M.A. Oliveira and M.I. Yoshida: J. Thermal Analysis and Calorimetry Vol 67 (2002), p.305.

Google Scholar

[19] Y. Lei, Q Wu, F. Yao and Y. Xu: Composites A. Vol. 38 (2007), p.1664.

Google Scholar

[20] Y. Habibi, W.K. El-Zawawy, M.M. Ibrahim and A. Dufresne: Compos. Sci. Technol. Vol. 68 (2008), p.1877.

Google Scholar

[21] F. Yao, Q. Wu, Y. Lei, W. Grio and Y. Xu: Polym. Degrad. and Stability Vol. 93 (2008), p.90.

Google Scholar

[22] D.G. Mulinari, H.J.C. Voorwald, M.O. Cioffi, M.L.C.P. Silva and S.M. Luz: Carbohydrate Polymers. Vol. 75 (2009), p.317.

Google Scholar

[23] S.N. Monteiro, V. Calado, R.J.S. Rodriguez and F.M. Margem: Materials Science & Engineering A Vol. 557 (2012), p.17.

Google Scholar

[24] W.G. Trindade, W. Hoareau, J.D. Megiatto, L.A.T. Razera, A. Castellan, and E. Frollini: Biomacromolecules Vol. 6 (5) (2005), p.2485.

DOI: 10.1021/bm058006+

Google Scholar