Study of the Reproducibility of Ni-Zn Nanoferrite Obtained by Combustion Reaction

Article Preview

Abstract:

This work involved a study of the reproducibility of the process of combustion synthesis to produce Ni-Zn ferrites. The structural, morphological and magnetic characteristics of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and magnetometry using an alternating gradient magnetometer (AGM). The XRD diffractograms of the samples indicated that they are monophasic, crystalline, with crystallite sizes ranging from 21 to 38 nm, and have a homogeneous morphology consisting of agglomerates of spherical particles. The samples behaved as soft magnetic materials, with magnetization levels ranging from 37 to 47 emug-1. The combustion synthesis was found to be efficient in producing Ni-Zn nanoferrites, yielding reproducible results.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 775-776)

Pages:

415-420

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.T. Vader and P.P. Hankare: Solid State Sciences Vol. 14 (2012), p.885.

Google Scholar

[2] M. Ishaque, M. U. Islam, A. M. Khan, I. Z. Rahman, A. Genson and S. Hampshire: Physica B Vol. 405 (2010), p.1532.

Google Scholar

[3] M. Kooti and A.N. Sedeh: Scientia Iranica, Transactions F. Nanotechnology. Vol. 19 (2012), p.930.

Google Scholar

[4] P.S. Aghav, V.N. Dhage, M.L. Mane, D.R. Shengule, R.G. Dorik and K.M. Jadhav: Physica B Vol. 406 (2011), p.4350.

DOI: 10.1016/j.physb.2011.08.066

Google Scholar

[5] D. Chen, C.Y. Mei, L.H. Yao, H.M. Jin, G.R. Qian and Z.P. Xu. J. Hazard. Mater. Vol. 192 (2011), p.1675.

Google Scholar

[6] D.A. Vieira, V.C.S. Diniz, R.H.G.A., Kiminami, D.R. Cornejo and A.C.F.M. Costa: Mater. Sci. Forum Vols. 727-728 (2012), p.1217.

Google Scholar

[7] D. A. Vieira, V. C. S. Diniz, H. L. Lira, R. H. G. A., Kiminami, D. R., Cornejo, A. C. F. M., Costa. Mater. Sci. Forum. Vols. 660-661 (2010), pp.910-915.

DOI: 10.4028/www.scientific.net/msf.660-661.910

Google Scholar

[8] A.C.F.M. Costa, D.A. Vieira, V.J. Silva, V.C.S. Diniz, R.H.G.A. Kiminami and L. Gama: J. Alloys. Compd. Vol. 483 (2009) p.37.

Google Scholar

[9] K. Mohit, S.K. Rout, S. Parida, G.P. Singh, S.K. Sharma, S.K. Pradhan and I.W. Kim: Physica B. Vol. 407 (2012), p.935.

Google Scholar

[10] Y.C. Liu and Y.P. Fu: Ceram. Int. Vol. 36 (2010), p.1597.

Google Scholar

[11] R.H.G.A. Kiminami: KONA Powder and Particle Vol. 19 (2001), p.156.

Google Scholar

[12] A.C.F.M. Costa, M.R. Morelli, R.H.G.A. Kiminami: Combustion Synthesis Processing of Nanoceramics. In: Journal of Nanoscience and Nanotechnology. (Org. ). Handbook of Nanoceramics and Their Based Nanodevices,. American Scientific Publishers. Vol. 5 (2009).

Google Scholar

[13] A.C.F.M. Costa, V.J. Silva, C.C. Xin, D.A. Vieira, D.R. Cornejo and R.H.G. A Kiminami: J. Alloys. Compd. Vol. 495 (2010), p.503.

Google Scholar

[14] M.A.F. Ramalho, L. Gama, S.G. Antonio, C.O. Paiva-Santos, E.J. Miola, R.H.G.A. Kiminami, A.C.F.M. Costa: J. Mater. Sci. Vol. 42 (2007), pp.3603-3606.

DOI: 10.1007/s10853-006-0383-2

Google Scholar

[15] S.R. Jain, K.C. Adiga and V.P. Verneker: Combust. Flame Vol. 40 (1981), p.71.

Google Scholar

[16] H. Klung and L. Alexander: X-ray diffraction procedures. (Wiley. New York. EUA. 1962), p.491.

Google Scholar

[17] D. Louer and T. Roisnel. DICVOL91 for Windows. Laboratoire de Cristallochimie, Universite de Rennes I, Campus de Beaulieu, France, (1993).

Google Scholar