Synthesis, Characterization and Catalytic Performance of Nanoferrites Subjected to the Esterification Reaction

Article Preview

Abstract:

Ni0.5Zn0.5Fe2O4, Mn0.5Zn0.5Fe2O4 and Ni0.2Cu0.3Zn0.5Fe2O4 nanoferrites were synthesized, characterized and evaluated in terms of their performance as catalysts in the methyl esterification reaction of soybean oil. The nanoferrites were synthesized by combustion and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The XRD patterns show the presence of inverse spinel B(AB)2O4 phase. The EDX results confirmed the stoichiometry of the nanoferrite systems, whose morphology consisted of large block-like agglomerates with a brittle aspect and a wide agglomerate size distribution. The results indicate that the Ni0.5Zn0.5Fe2O4 nanoferrite was the most active catalyst in the esterification reaction, with conversion rates ranging from 40 to 91%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 775-776)

Pages:

421-426

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Yin, L. Chen, Z. Wang, R. Qu, X. Liu and S. Ren: Bioresource Technology Vol. 110 (2012), p.258.

Google Scholar

[2] A.C. Carmo Jr., L.K.C. Souza, C.E.F. Costa, E. Longo, J.R. Zamian and G.N. Rocha Filho: Fuel Vol. 88 (2009), p.461.

Google Scholar

[3] F. Guo, Z. Fang, C.C. Xu and R. L Smith Jr.: Progress in Energy and Combustion Science Vol. 38 (2012), p.672.

Google Scholar

[4] F. Zhang and Z. Fang: Bioresource Technology Vol. 124 (2012), p.440.

Google Scholar

[5] J. Dantas, A.S. Silva, P.T.A. Santos, J.R.D. Santos, D.C. Barbosa, S.M.P. Meneghetti and A.C.F.M. Costa: Materials Science Forum Vol. 727-728 (2012), p.1302.

Google Scholar

[6] F. Fresno, R.F. Saavedra, M.B.G. Mancebo, A. Vidal, M Sánchez, M.I. Rucandio, A.J. Quejido and M. Romero: International Journal of Hydrogen Energy Vol. 34 (2009), p.2918.

DOI: 10.1016/j.ijhydene.2009.02.020

Google Scholar

[7] S.R. Jain and K.C. Adiga: Combustion and Flame Vol. 40 (1981), p.71.

Google Scholar

[8] B.S. Barros: Programa Cristalito Vol. 1. 0. 0 (2006).

Google Scholar

[9] J.M. Marchetti and A.F. Errazu: Fuel Vol. 87 (2008), p.3477.

Google Scholar

[10] COSTA, A. C. F. M.; SARUBO-JUNIOR, P.; VIEIRA, D. A.; SILVA, V. J.; BARROS, I. T. S.; CORNEJO, D. R.; KIMINAMI, R. H. G. A. Cerâmica, Vol. 55, (2009), p.78.

DOI: 10.1590/s0366-69132009000100010

Google Scholar

[11] A.C.F.M. Costa., V.J. Silva, D.R. Cornrjo, M.R. Morelli, R.H.G.A. Kiminami and L. Gama: Journal of Magnetism and Magnetic Materials Vol. 320 (2008), p . e370.

DOI: 10.1016/j.jmmm.2008.02.159

Google Scholar

[12] C.C. Agrafiotis, C. Pagkoura, A. Zygogianni, G. Karagiannakis, M. Kostoglou and A.G. Konstandopoulos: International Journal of Hydrogen Energy Vol. 37 (2012), p.8964.

DOI: 10.1016/j.ijhydene.2012.02.196

Google Scholar

[13] S. Tang, L. Wang, Y. Zhang, S. Li, S. Tian and B. Wang: Fuel Processing Technology Vol. 95 (2012), p.84.

Google Scholar