Improving Beamtime Efficiency for Residual Stress Neutron Experiments

Article Preview

Abstract:

Starting during the shut-down of the HZB research reactor BER-II in 2011/2012 the E3 residual stress and texture diffractometer in Berlin underwent a comprehensive upgrade. The investments were broken down into different criteria, such as enhancing the instrument performance and accuracy as well as extending the range of applications for the user community. Here, we report about the gains achieved after integrating and commissioning the individual hardware and software tools included in the upgrade project, namely a motorized primary slit to accurately adjust the gauge volume, a secondary optics radial collimator and a laser scanner to precisely and quickly align the sample. The integration of the presented devices is further supported by software developments to shorten the instrument alignment procedure and measurement time. The upgrade has improved the efficiency of the available neutron beamtime.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-11

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. C. Wimpory, P. Mikula, J. Šaroun, T. Poeste, J. Li, M. Hofmann, R. Schneider, Efficiency Boost of the Materials Science Diffractometer E3 at BENSC: One Order of Magnitude Due to a Horizontally and Vertically Focusing Monochromator, Neutron News 19 (2008) 16–19.

DOI: 10.1080/10448630701831995

Google Scholar

[2] M. Boin, R. C. Wimpory, Upgrade Activities on the E3 Residual Stress Neutron Diffractometer, Mater. Sci. Forum 768-769 (2014) 31–35.

DOI: 10.4028/www.scientific.net/msf.768-769.31

Google Scholar

[3] R. C. Wimpory, M. Boin, K. Rolfs, M. Chmielus, T. Fuß, R. Woracek, M. Schöbel, E3: A multipurpose instrument for strain, stress, texture and more, Meca Sens VI, Hamburg, Germany (2011)

Google Scholar

[4] M. C. Smith, A. C. Smith, R. C. Wimpory, C. Ohms, B. Nadri, and P. J. Bouchard, "Optimising Residual Stress Measurements and Predictions in a Welded Benchmark Specimen: A Review of Phase 2 of the NeT Task Group 1 Single Bead on Plate Round Robin," in Proc. of the ASME Pressure Vessels and Piping Conference 2009 Volume 6: Materials and Fabrication, Parts A and B, ASME , 2010, 277–301

DOI: 10.1115/pvp2009-77157

Google Scholar

[5] M. Hoelzel, W. M. Gan, M. Hofmann, C. Randau, G. Seidl, P. Jüttner, W. W. Schmahl, Rotatable multifunctional load frames for neutron diffractometers at FRM II—design, specifications and applications, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 711 (2013) 101–105.

DOI: 10.1016/j.nima.2013.01.049

Google Scholar

[6] R. Woracek, D. Penumadu, N. Kardjilov, A. Hilger, M. Strobl, R. C. Wimpory, I. Manke, J. Banhart, Neutron Bragg-edge-imaging for strain mapping under in situ tensile loading, J. Appl. Phys. 109 (2011) 093506.

DOI: 10.1063/1.3582138

Google Scholar

[7] M. C. Smith, A. C. Smith, NeT bead-on-plate round robin: Comparison of residual stress predictions and measurements, Int. J. Pres. Ves. Pip. 86 (2009) 79–95.

DOI: 10.1016/j.ijpvp.2008.11.017

Google Scholar

[8] X.-L. Wang, S. Spooner, C. R. Hubbard, Theory of the Peak Shift Anomaly due to Partial Burial of the Sampling Volume in Neutron Diffraction Residual Stress Measurements, J. Appl. Cryst. 31 (1998) 52–59.

DOI: 10.1107/s0021889897008261

Google Scholar

[9] T. Gnaeupel-Herold, H. J. Prask, R. J. Fields, T. J. Foecke, Z. C. Xia, U. Lienert, A synchrotron study of residual stresses in a Al6022 deep drawn cup, Mater. Sci. Eng., A 366 (2004) 104–113.

DOI: 10.1016/j.msea.2003.08.059

Google Scholar

[10] R. C. Wimpory, U. Wasmuth, J. Rebelo-Kornmeier, M. Hofmann, The Effect of Grain Size on Strain Determination Using a Neutron Diffractometer, Mater. Sci. Forum 638-642 (2010) 2405–2410.

DOI: 10.4028/www.scientific.net/msf.638-642.2405

Google Scholar

[11] T. Pirling, Neutron Strain Scanning at Interfaces: An Optimised Beam Optics to Reduce the Surface Effect, Mater. Sci. Forum 347-349 (2000) 107–112.

DOI: 10.4028/www.scientific.net/msf.347-349.107

Google Scholar

[12] T. Fuß, R. C. Wimpory, M. Klaus, C. Genzel, Bridging Gaps in Surface Zone Residual Stress Analysis Using Complementary Probes for Strain Depth Profiling, Mater. Sci. Forum 681 (2011) 411–416.

DOI: 10.4028/www.scientific.net/msf.681.411

Google Scholar

[13] J. Šaroun, J. R. Kornmeier, M. Hofmann, P. Mikula, M. Vrána, Analytical model for neutron diffraction peak shifts due to the surface effect, J. Appl. Cryst. 46 (2013) 628–638.

DOI: 10.1107/s0021889813008194

Google Scholar

[14] C. Randau, U. Garbe, H.-G. Brokmeier, StressTextureCalculator : a software tool to extract texture, strain and microstructure information from area-detector measurements, J. Appl. Cryst. 44 (2011) 641–646.

DOI: 10.1107/s0021889811012064

Google Scholar

[15] M. Schöbel, J. Jonke, H. P. Degischer, V. Paffenholz, A. Brendel, R. C. Wimpory, M. Di Michiel, Thermal fatigue damage in monofilament reinforced copper for heat sink applications in divertor elements, J. Nucl. Mater. 409 (2011) 225–234.

DOI: 10.1016/j.jnucmat.2010.12.242

Google Scholar