Effect of Sample Mount on Active Screen Plasma Duplex Processing

Article Preview

Abstract:

Nitriding steel sample SACM 645 was nitrided by active screen plasma nitriding using a titanium double screen to form simultaneously TiN coatings/nitrogen-diffusion layer on the sample surface. The sample was placed on the sample mount of the various materials (SACM 645, Cu, Ti and SiO2-Al2O3). The sample with the mount was placed on the sample stage in a cathodic potential. A titanium double screen was placed on the cathodic stage around the mount. Active screen plasma duplex processing were performed in 75% N2 + 25% H2 atmosphere for 18 ks at 823 K under 100 Pa. In each sample, the hardness of the sample surface was high and beneath compound layer, the hardness decreased rapidly with the distance from the surface, following a flattening of the profile. Wear loss of each duplex-processed sample decreased than that of untreated sample. Particularly, wear loss of the sample using the Ti mount considerably decreased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-22

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Sun, T. Bell, Plasma surface engineering of low alloy steel, Mater Sci. Eng. A 140(1991) 419-434.

Google Scholar

[2] M. Samandi, B.A. Shedden, D.I. Smith, G.A. Collins, R. Hutchings, J. Tendys, Microstructure, corrosion and tribological behaviour of plasma immersion ion-implanted austenitic stainless steel, Surf. Coat. Technol. 59 (1993) 261-666.

DOI: 10.1016/0257-8972(93)90094-5

Google Scholar

[3] A. Nishimoto, K. Akamatsu, Effect of pre-deforming on low temperature plasma nitriding of austenitic stainless steel, Plasma Process. Polym. 6 (2009) S306-S309.

DOI: 10.1002/ppap.200930707

Google Scholar

[4] H. Dong, S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys, Int. Mater. Rev. 55 (2010) 65-98.

DOI: 10.1179/095066009x12572530170589

Google Scholar

[5] C. Alves Jr., E.F. da Silva, A.E. Martinelli, Effect of workpiece geometry on the uniformity of nitrided layers, Surf. Coat. Technol. 139 (2001) 1-5.

DOI: 10.1016/s0257-8972(00)01146-4

Google Scholar

[6] R. Fix, R.G. Gordon, D.M. Hoffman, Chemical vapor deposition of titanium, zirconium, and hafnium nitride thin films, Chem. Mater. 3 (1991) 1138-1148.

DOI: 10.1021/cm00018a034

Google Scholar

[7] J. Musil, Hard and superhard nanocomposite coatings, Surf. Coat. Technol. 125 (2000) 322-330.

Google Scholar

[8] L. Hultman, Thermal stability of nitride thin films, Vacuum 57 (2000) 1-30.

Google Scholar

[9] W.J. Chou, G.P. Yu, J.H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates, Surf. Coat. Technol. 149 (2002) 7-13.

DOI: 10.1016/s0257-8972(01)01382-2

Google Scholar

[10] C.X. Li, T. Bell, Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel, Corr. Sci. 46 (2004) 1527-1547.

DOI: 10.1016/j.corsci.2003.09.015

Google Scholar

[11] C. Zhao, C.X. Li, H. Dong, T. Bell, Study on the active screen plasma nitriding and its nitriding mechanism, Surf. Coat. Technol. 201 (2006) 2320-2325.

DOI: 10.1016/j.surfcoat.2006.03.045

Google Scholar

[12] A. Nishimoto, T.E. Bell, T. Bell, Feasibility study of active screen plasma nitriding of titanium alloy, Surf. Eng. 26 (2010) 79-84.

DOI: 10.1179/026708409x12454193831760

Google Scholar

[13] C.X. Li, Active screen plasma nitriding – an overview, Surf. Eng. (2010) 135-141.

Google Scholar

[14] A. Nishimoto, K. Nagatsuka, R. Narita, H. Nii, K. Akamatsu, Effect of the distance between screen and sample on active screen plasma nitriding properties, Surf. Coat. Technol. 205 (2010) S365-S368.

DOI: 10.1016/j.surfcoat.2010.08.034

Google Scholar

[15] K. Nagatsuka, A. Nishimoto, K. Akamatsu, Surface hardening of duplex stainless steel by low temperature active screen plasma nitriding, Surf. Coat. Technol. 205 (2010) S295-S299.

DOI: 10.1016/j.surfcoat.2010.08.012

Google Scholar

[16] R.R.M. de Sousa, F.O. de Araújo, L.C. Gontijo, J.A.P. da Costa, C. Alves Jr., Cathodic cage plasma nitriding (CCPN) of austenitic stainless steel (AISI 316): Influence of the different ratios of the (N2/H2) on the nitrided layers properties, Vacuum86 (2012).

DOI: 10.1016/j.vacuum.2012.05.008

Google Scholar

[17] S.C. Gallo, H. Dong, New insights into the mechanism of low-temperature active-screen plasma nitriding of austenitic stainless steel, Scr. Mater. 67 (2012) 89-91.

DOI: 10.1016/j.scriptamat.2012.03.028

Google Scholar

[18] X. Fu, M.J. Jenkins, G. Sun, E. Bertoti, H. Dong, Characterization of active screen plasma modified polyurethane surfaces, Surf. Coat. Technol. 206 (2012) 4799-4807.

DOI: 10.1016/j.surfcoat.2012.04.051

Google Scholar

[19] I. Burlacov, K. Börner, H.J. Spies, H. Biermann, D. Lopatik, H. Zimmermann, J. Röpcke, In-situ monitoring of plasma enhanced nitriding processes using infrared absorption and mass spectroscopy, Surf. Coat. Technol. 206 (2012) 3955-3960.

DOI: 10.1016/j.surfcoat.2012.03.067

Google Scholar

[20] Z.S. Asadi, F. Mahboubi, Effect of component's geometry on the plasma nitriding behavior of AISI 4340 steel, Mater. Des. 206 (2012) 516-521.

DOI: 10.1016/j.matdes.2011.04.066

Google Scholar

[21] A. Nishimoto, H. Nii, R. Narita, K. Akamatsu, Simultaneous duplex process of TiN coating and nitriding by active screen plasma nitriding, Surf. Coat. Technol. 228 (2013) S558-S562.

DOI: 10.1016/j.surfcoat.2012.04.021

Google Scholar

[22] G. Kaklamani, J. Bowen, N. Mehrban, H. Dong, L.M. Grover, A. Stamboulis, Active screen plasma nitriding enhances cell attachment to polymer surfaces, Appl. Surf. Sci. 273 (2013)787-798.

DOI: 10.1016/j.apsusc.2013.03.001

Google Scholar