[1]
H. Nykyforchyn, E. Lunarska, O. Tsyrulnyk, et al, Effect of the long-term service of the gas pipeline on the properties of the ferrite-pearlite steel, Mat. and Corrosion, 60, (2009) 716-725.
DOI: 10.1002/maco.200805158
Google Scholar
[2]
P. Maruschak, L. Poberezhny, T. Pyrig Fatigue and brittle fracture of carbon steel of gas and oil pipelines, Transport, 28 (2013) P. 270-275.
DOI: 10.3846/16484142.2013.829782
Google Scholar
[3]
H. Nykyforchyn, E. Lunarska, O. Tsyrulnyk et al., Environmentally assisted in-bulk, steel degradation of long term service gas trunkline, Engineering Failure Analysis, 17, (2010) 624–632.
DOI: 10.1016/j.engfailanal.2009.04.007
Google Scholar
[4]
P. Liang, X. Li, C. Du, X. Chen Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution, Materials and Design, 30(5) (2009) 1712-1717.
DOI: 10.1016/j.matdes.2008.07.012
Google Scholar
[5]
E.I. Kryzhanivs'kyi, H.M. Nykyforchyn Specific features of hydrogen-induced corrosion degradation of steels of gas and oil pipelines and oil storage reservoirs, Mat. Sci., 47(2) (2011) 127-136.
DOI: 10.1007/s11003-011-9390-9
Google Scholar
[6]
S.J. Wu, L.W. Cao Effect of intergranular failure on the critical fracture stress and the fracture toughness of degraded reactor pressure vessel steel, Int. J. of Pressure Vessels and Piping, 101 (2013) 23–29.
DOI: 10.1016/j.ijpvp.2012.08.006
Google Scholar
[7]
C.R.F. Azevedo, A. Sinatora Failure analysis of a gas pipeline, Engineering Failure Analysis, 11(3) (2004) P. 387-400.
DOI: 10.1016/j.engfailanal.2003.06.004
Google Scholar
[8]
I.B. Konovalenko, P.O. Maruschak Automated method for studying the deformation behavior of a material damaged by a thermal fatigue crack network, Optoelectronics, Instrumentation and Data Processing, 49 (2013) P. 243-249.
DOI: 10.3103/s8756699013030059
Google Scholar