Metallography of Low Alloy Cr-Mn Hot-Rolled Steel and Quantitative Evaluation of Grain Boundary- and Internal Oxides by TEM

Article Preview

Abstract:

Alloy elements undergo complex diffusion and segregation processes during steel production. Oxygen diffuses into the steel matrix and forms oxides at the surface (called scale), at the grain boundaries and within the grains. In our work we present assemblies and composition of various oxides found at the grain boundaries and within the grains of a low alloy Mn-Cr hot-rolled steel sheet. We utilise metallographic means (surface etching) and transmission electron microscopy (TEM). After etching we observe four zones of different composition: (i) the scale, followed by a decarburised metallic layer with (ii) oxidised grain boundaries, (iii) non-oxidised grain boundaries and last, (iv) the bulk. Via TEM, we analyse alloy element oxides at grain boundaries and within the grains with high spatial resolution. At the grain boundaries and within the grains we find oxides, such as Mn- or Cr oxides, rather than binary oxides (e.g. Fe-Mn- and Fe-Cr oxides) or even more complex oxides, such as Fe-Mn-Cr oxides. The oxide species found lie next to- or embedded amongst one another.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

284-287

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.J. Grabke, K. Hennesen, R. Möller, W. Wei, Effects of manganese on the grain boundary segregation, bulk and grain boundary diffusivity of P in ferrite, Scripta Metallurgica 21 (1987), pp.1329-1334.

DOI: 10.1016/0036-9748(87)90108-6

Google Scholar

[2] H. Berns, W. Theisen, Eisenwerkstoffe - Stahl und Gusseisen, 4. ed., Springer, 2008, pp.72-76.

Google Scholar

[3] A. Katsman, H.J. Grabke, L. Levin, Penetration of oxygen along grain boundaries during oxidation of alloys and intermetallics, Oxidation of Metals 46 (1996), pp.313-330.

DOI: 10.1007/bf01050802

Google Scholar

[4] U. Krupp, V.B. Trindade, P. Schmidt, H. -J. Christ, U. Buschmann, W. Wiechert, The effect of grain-boundary diffusion on the oxidation of low-chromium steels, Defect and Diffusion Forum 237-240 (2005), pp.946-951.

DOI: 10.4028/www.scientific.net/ddf.237-240.946

Google Scholar

[5] A.J. Papworth, D.B. Knorr, D.B. Williams, The evolution of the segregation behavior of alloying elements in a low-alloy steel, Scripta Materialia 48 (2003), pp.1301-1305.

DOI: 10.1016/s1359-6462(03)00023-x

Google Scholar

[6] C. Prinz, M. Hunkel, B. Clausen, F. Hoffmann, H. -W. Zoch, Characterization of segregations and microstructure and their influence on distortion of low alloy SAE 5120 steel, Materialwissenschaft und Werkstofftechnik 40 (2009), pp.368-373.

DOI: 10.1002/mawe.200900461

Google Scholar

[7] M.J.L. Gines, G.J. Benitez, T. Perez, E. Merli, M.A. Firpo, W. Egli, Study of the picklability of 1. 8 mm hot-rolled steel strip in hydrochloric acid, Latin American Applied Research 32 (2002), pp.281-288.

Google Scholar

[8] H. Spähn, Elektrochemische Korrosion in wäßrigen Lösungen ohne gleichzeitige mechanische Beanspruchung, in: E. Kunze (ed. ), Korrosion und Korrosionsschutz, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009, pp.77-192.

DOI: 10.1002/9783527625659.ch2a

Google Scholar

[9] J. Preußner, E. Fleischmann, R. Völkl, U. Glatzel, Enrichment of boron at grain boundaries of platinum-based alloys determined by electron energy loss spectroscopy in a transmission electron microscope, International Journal of Materials Research 101 (2010).

DOI: 10.3139/146.110320

Google Scholar