[1]
N. Beronská, K. Iždinský, P. Štefánik, F. Simančík, M. Zemánková, T. Dvorák, The influence of Cr on structure and thermal expansion of copper matrix composites reinforced with unidirectionally aligned continuous high modulus C fibres, Kovove Mater. 47 (2009).
DOI: 10.4028/www.scientific.net/ddf.297-301.820
Google Scholar
[2]
C. Pradere, C. Sauder, Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300–2500K), Carbon 46 (2008) 1874-1884.
DOI: 10.1016/j.carbon.2008.07.035
Google Scholar
[3]
R. Schapery, R. A, Thermal expansion coefficients of composite materials based on energy principles, J. Compos. Mater. 2 (1968) 380-404.
DOI: 10.1177/002199836800200308
Google Scholar
[4]
G. Korb, J. Koráb, G. Groboth, Thermal expansion behaviour of unidirectional carbon-fibre-reinforced copper-matrix composites, Compos. Part A: Appl. Sci. A29 (1998) 1563-1567.
DOI: 10.1016/s1359-835x(98)00066-9
Google Scholar
[5]
Z. H. Karadeniz, D. Kumlutas, A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials, Compos. Struct. 78 (2007) 1-10.
DOI: 10.1016/j.compstruct.2005.11.034
Google Scholar
[6]
H. E. Nassini, M. Moreno, O.C. Gonzales, Thermal expansion behaviour of aluminium alloys reinforced with alumina planar random short fibers, J. Mater. Sci. 36 (2001) 2759.
Google Scholar
[7]
S. Kúdela Jr, A. Rudajevová, S. Kúdela, Anisotropy of thermal expansion in Mg- and Mg4Li-matrix composites reinforced by short alumina fibers, Mater. Sci. Eng. A-Sruct. 462 (2007) 239-242.
DOI: 10.1016/j.msea.2006.05.173
Google Scholar
[8]
J. B. Nelson, D.P. Riley, The thermal expansion of graphite from 15 °C to 800 °C, Proc. Phys. Soc., 57 (1945) 477-486.
DOI: 10.1088/0959-5309/57/6/303
Google Scholar