Copper (II) Oxide and Graphene as Composite Materials for Glucose Biosensors

Article Preview

Abstract:

Copper (II) oxide graphene composite materials were prepared on the electrode surface at the solution of CuCl2. The resulting composite material was characterized by cyclic voltammetry on surface of the glassy carbon electrode. Prepared copper (II) oxide graphene nanocomposite was scraped from the electrode surface and was measured Raman spectra by optical tweezers combined with micro Raman spectroscopy. This composite nanomaterial was used on determination of glucose and can be used to construct bio batteries too.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

541-544

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Batchelor-McAuley, Y. Du, G.G. Wildgoose, R.G. Compton, The use of copper (II) oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide, Sens. Actuators B: Chem. 135 (2008) 230-235.

DOI: 10.1016/j.snb.2008.08.006

Google Scholar

[2] Z. J. Zhuang, X. D. Su, H. Y. Yuan, Q. Sun, D. Xiao, M. M. F. Choi, An improved sensitivity non enzymatic glucose sensor based on a CuO nanowire modified Cu electrode, Analyst 133 (2008) 126-132.

DOI: 10.1039/b712970j

Google Scholar

[3] L. Wen-Zhi, L. You-Qin, Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating/potential cycling method and its characterization, Sens. Actuators B: 141 (2009) 147-153.

DOI: 10.1016/j.snb.2009.05.037

Google Scholar

[4] K. R. Alok, T. A. Ly, G. Jihyen, M. Vinod, K. Jungwon, P. Joseph, K. S. Nitish, S. Jinju, K. Jaekok, Facile approach to synthetize CuO/reduced graphene oxide nanocomposite as anode materials for lithium-ion battery, J. Power Sources 244 (2013).

DOI: 10.1016/j.jpowsour.2012.11.112

Google Scholar

[5] H. Yu-Wei, H. Ting-Kang, S. Chia-Liang, N. Yung-Tang, P. Nen-Wen, G. Ming-Der, Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications, Electrochim. Acta 82 (2012) 152-157.

DOI: 10.1016/j.electacta.2012.03.094

Google Scholar

[6] G.A. Rivas, M.D. Rubianes, M.C. Rodriguez, N.F. Ferreyra, G.L. Luque, M.L. Pedano, S.A. Miscoria, Carbon nanotubes paste electrodes. A new alternative for the development of electrochemical sensors, Electroanalysis 19 (2007) 823.

DOI: 10.1002/elan.200603778

Google Scholar

[7] J. C. Rubim, G. Kaanen, D. Schumacher, J. Dunnwald, A. Otto, Raman spectra of silver coated graphite and glassy carbon electrode, Surface Sci. 37 (1989) 233-243.

DOI: 10.1016/0169-4332(89)90485-6

Google Scholar

[8] S. Seung-Deok, L. Duk-Hee, K. Jae-Chan, L. Gwang-Hee, K. Dong-Wan, Room-temperature synthesis of CuO/graphene nanocomposite electrodes for high lithium storage capacity, Ceramics International 39 (2013) 1749-1755.

DOI: 10.1016/j.ceramint.2012.08.021

Google Scholar

[9] J. F. Xu, W. Ji, Z. X. Shen, S. H. Tang, Preparation and characterization of CuO nanocrystals, J. Solid State Chem. 147 (1999) 516-519.

DOI: 10.1006/jssc.1999.8409

Google Scholar

[10] L. Ding, E. Wang, cyclic voltammetry of dye-modified supported bilayer lipid membranes, Bioelectrochem. Bioenerg. 43 (1997) 173-176.

DOI: 10.1016/s0302-4598(96)05169-0

Google Scholar

[11] D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature Nanotech. Volume: 8 (2013) 235-246.

DOI: 10.1038/nnano.2013.46

Google Scholar

[12] S. Bittolo Bon, L. Valentini, J. M. Kenny, Preparation of extended alkylated graphene oxide conducting layers and effect study on the electrical properties of PEDOT: PSS polymer composites, Chem. Phys. Lett. 494 (2010) 264-268.

DOI: 10.1016/j.cplett.2010.06.024

Google Scholar