Fragmentation of Co-Fe-Ta-B Bulk Metallic Glass

Article Preview

Abstract:

The main limitation of bulk metallic glasses for their application as structural materials is the large brittleness under the external loading. We analyzed the failure characteristics of Co43Fe20Ta5.5B31.5 (at.%) bulk metallic glass deformed in a compression at the room temperature and a low strain rate. Under loading the amorphous structure can store high elastic energy. During the failure this energy is released and the alloy breaks into small particles or powder exhibiting a fragmentation mode. The nanoscale fracture surface morphology respects the micromechanisms of failure of the amorphous structure. The fracture surface consists of a smooth mirror cleavage zone and a river pattern zone with the nanosized dimples arranged in lines respecting the periodic corrugation zones oriented perpendicular to the crack propagation direction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

553-556

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Ocelík., P. Diko, V. Hajko, J. Miskuf, P. Duhaj, J. Mater. Sci., 22 (1987) 2305-2309.

Google Scholar

[2] M.Q. Jiang, J.X. Meng, V. Keryvin, L.H. Dai, Intermetallics 19 (2011) 1775-1779.

Google Scholar

[3] Z.F. Zhang, F.F. Wu, W. Gao, J. Tan, Z.G. Wang, M. Stoica, J. Das, J. Eckert, , B.L. Shen, A. Inoue, Applied Physics Letters 89 (2006) 251917-1-3.

DOI: 10.1063/1.2422895

Google Scholar

[4] X.X. Xia, W.H. Wang, small 8, 8 (2012) 1197-1203.

Google Scholar

[5] J.T. Fan, Z.F. Zhang, S.X. Mao, B.L. Shen, A. Inoue, Intermetallics 17 (2009) 445-452.

Google Scholar

[6] Z.F. Zhang, H. Zhang, B.L. Shen, A. Inoue, J. Eckert, Philosophical Magazine Letters 86, 10 (2006) 643-650.

DOI: 10.1080/09500830600949602

Google Scholar

[7] F.F. Wu, Z.F. Zhang, B.L. Shen, S.X. Mao, J. Eckert, Advanced Engineering Materials 10, 8, (2008) 727-730.

Google Scholar

[8] W.Z. Liang, X.Y. Mao, L.Z. Wu, H.J. Yu, L. Zhang, J. Mater. Sci. 44 (2009) 2016-(2020).

Google Scholar

[9] Y.T. Wang, X.K. Xi, G. Wang, X.X. Xia, W.H. Wang, J. Appl. Phys. 106 (2009) 113528-1– 6.

Google Scholar

[10] E. Tabachnikova, V. Bengus, J. Miskuf, K. Csach, V. Ocelik, W. Johnson and V. Molokanov, Mater. Sci. Forum. 343–346 (2000) 197–202.

Google Scholar

[11] L.F. Liu, H.A. Zhang, H.Q. Li, G.Y. Zhang, Scripta Materialia 60, 9 (2009) 795-798.

Google Scholar

[12] G. Wang, D.Q. Zhao, H.Y. Bai, M.X. Pan, A.L. Xia, B.S. Han, X.K. Xi, Y. Wu, W.H. Wang, Physical Review Letters 98 (2007) 235501-1 -4.

Google Scholar

[13] X. Teng, T. Wierzbicki, H. Couque, Mechanics of Materials 39 (2007) 107-125.

Google Scholar