Towards a 3-Dimensional Phase-Field Model of Non-Isothermal Alloy Solidification

Article Preview

Abstract:

We review the application of advanced numerical techniques such as adaptive mesh refinement, implicit time-stepping, multigrid solvers and massively parallel implementations as a route to obtaining solutions to the 3-dimensional phase field problem for coupled heat and solute transport during non-isothermal alloy solidification. Using such techniques it is shown that such models are tractable for modest values of the Lewis number (ratio of thermal to solutal diffusivities). Solutions to the 3-dimensional problem are compared with existing solutions to the equivalent 2-dimensional problem.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2166-2171

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.S. Langer, in G. Grinstein and G. Mazenko (Eds) Directions in condensed matter physics, World Scientific Publishing, Singapore, 1986 p.164.

Google Scholar

[2] O. Penrose and P.C. Fife, Physica D 43 (1990) 44.

Google Scholar

[3] J.C. LaCombe, M.B. Koss, and M.E. Glicksman, Phys. Rev. Lett. 83 (1999) 2997.

Google Scholar

[4] J.C. Ramirez and C. Beckermann, Acta Mater. 53 (2005) 1721.

Google Scholar

[5] J. Rosam, P.K. Jimack and A.M. Mullis, Acta Mater. 56 (2008) 4559.

Google Scholar

[6] B. Echebarria, R. Folch, A. Karma and M. Plapp, Phys. Rev. E 70 (2004) 061604.

Google Scholar

[7] A. Karma and W. -J. Rappel, Phys. Rev. E 53 (1996) R3017.

Google Scholar

[8] W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-Dependent AdvectionDiffusion-Reaction Equations, Springer, Verlag, (2003).

DOI: 10.1007/978-3-662-09017-6

Google Scholar

[9] A. Brandt, Math. Comput. 31 (1977) 333.

Google Scholar

[10] PhAIM2-d is available from www. digital. leeds. ac. uk/software as an OpenSource download.

Google Scholar

[11] K. Olson, in A. Deane et al. (Eds) Parallel Computational Fluid Dynamics 2005: Theory and Applications, Elsevier, (2006).

Google Scholar

[12] J. R. Green, P.K. Jimack, A.M. Mullis and J. Rosam, Partial Differential Eq, 27 (2011) 106.

Google Scholar

[13] A. Karma and W. -J. Rappel, Phys. Rev. Lett., 77 (1996) 4050.

Google Scholar

[14] J.H. Jeong, N. Goldenfeld and J. Dantzig, Phys. Rev. E 64 (2001) 041602.

Google Scholar

[15] C. Goodyer, P.K. Jimack, A.M. Mullis, H. Dong, X. Yu, Adv. Appl. Math. Mech. 4 (2012) 665.

Google Scholar

[16] J. Rosam, P. K. Jimack and A. M. Mullis, Phys. Rev. E 79 030601 (2009).

Google Scholar

[17] J. Lipton, W. Kurz and R. Trivedi, Acta Metall. 35 (1987) 957.

Google Scholar