Microstructural Barriers against Fatigue Crack Growth

Article Preview

Abstract:

Fatigue induced fracture is the number one reason for failure of technical systems. However, in the stage of small crack growth grain or phase boundaries lead to a fluctuating crack propagation rate near the obstacle. Sometimes the cracks stop completely for a large number of cycles resulting in an additional number of life time cycles. However, so far it is not clear, what actually determines the resistance of a grain boundary against fatigue cracks. Therefore we developed a systematic experimental technique based on in-situ imaging in the scanning electron microscope and focused ion beam (FIB) crack initiation which gives detailed information on the interaction of short fatigue cracks with microstructural elements. We investigated the mechanisms of crack transmission in the neighbouring grain on the microscopic scale and identified different useful aspects of the interaction between microcracks and microstructural barriers. The 3D-tomographs revealed by serial sectioning an FIB give information about the transition process from one grain to the neighbouring one. The result is a purely geometrical consideration leading to a quantitative description of the blocking effect of grain boundaries on short fatigue crack growth. The results include useful aspects for fatigue life calculation and to make materials more fatigue resistant.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2339-2346

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.J. Miller, Fatigue Fract. Eng. Mater. Struct., 5, 3 (1982) 223-232.

Google Scholar

[2] K. Lu, L. Lu, S. Suresh, Science, 324 (2009) 349-352.

Google Scholar

[3] H. Weiland, J. Nardiello, S. Zaefferer, S. Cheong, J. Papazian, Dierk Raabe, Eng. Fracture Mech., 76, 5 (2009) 709-714.

DOI: 10.1016/j.engfracmech.2008.11.012

Google Scholar

[4] B.A. Bilby, A.H. Cotrell, K.H. Swinden, Proc. R. Soc. London Sect. A, 272 (1963) 304-3.

Google Scholar

[5] K. Tanaka, Y. Akiniwa, Y. Nakai, R.P. Wei, Eng. Fracture Mech., 24 (1986) 803-819.

Google Scholar

[6] A. Navarro, E.R. De Los Rios, Phil. Mag. A, 57, 1 (1988) 15-36.

Google Scholar

[7] Y.H. Zhang, L. Edwards, Scripta Metall. Mater., 26 (1992) 1901-(1906).

Google Scholar

[8] L. Edwards, Y.H. Zhang, Acta Metall. Mater., 42, 4 (1994) 1413-1422.

Google Scholar

[9] L. Edwards, Y.H. Zhang, Acta Metall. Mater., 42, 4 (1994) 1423-1431.

Google Scholar

[10] Y. Gao, J.S. Stölken, M. Kumar, R.O. Ritchie, Acta Mater., 55 (2007) 3155–3167.

Google Scholar

[11] T. Zhai, A.J. Wilkinson, J.W. Martin, Acta Mater., 48 (2000) 4917-4927.

Google Scholar

[12] T. Zhai, X.P. Jiang, X. J. Li, M.D. Garratt, G.H. Bray, Int. J. Fatigue, 27 (2005) 1202-1209.

Google Scholar

[13] W. Schaef, M. Marx, H. Vehoff, A. Heckl, P. Randelzhofer, Acta Mater., 59 (2011) 1849-1861.

DOI: 10.1016/j.actamat.2010.11.051

Google Scholar

[14] B. Kuenkler, Dueber, P. Koester, U. Krupp, C.P. Fritzen, H.J. Christ, Eng. Fracture Mech. 75, 3-4 (2008) 715-725.

Google Scholar

[15] E. Ferrie, M. Sauzay, J. of nuclear Mater., 386-88 (2009) 666-669.

Google Scholar

[16] M. Marx, W. Schaef, H. Vehoff, C. Holzapfel, Mat. Sci. Eng. A, 435/436 (2006) 595-601.

Google Scholar

[17] C. Holzapfel, W. Schäf, M. Marx, H. Vehoff, F. Mücklich, Scripta Mat., 56 (2007) 697-700.

DOI: 10.1016/j.scriptamat.2006.12.025

Google Scholar

[18] W. Schaef, M. Marx, Acta Mater. 60 (2012) 2425–2436.

Google Scholar

[19] W. Schaef, M. Marx, Int. J. Fatigue, in press.

Google Scholar

[20] W. Schaef, Shaker Verlag (2011) ISBN 978-3-8440-0219-5.

Google Scholar