Twin Roll Casting (TRC) of Magnesium Alloys – Opportunities and Challenges

Article Preview

Abstract:

Twin Roll Casting (TRC) has been successfully employed for the past sixty years to produce aluminum, steel and, in the past ten years, magnesium sheet. Although the TRC process is relatively simple, its application for commercial-scale magnesium strip production has proven difficult. This is primarily due to inherent characteristics of magnesium alloys, such as their high reactivity to oxygen, low specific heat and latent heat of fusion, and large freezing ranges, which can induce formation of casting defects if various TRC processing parameters, such as metal delivery design, heat transfer in the roll gap, and casting speed, aren’t tightly controlled. Research is underway worldwide to concurrently gain a better understanding of TRC processing variables in order to provide optimum casting conditions which will reduce defects, and develop new magnesium alloys with properties tailored to the TRC process. The opportunities and challenges associated with magnesium TRC will be outlined and include: 1) defect formation during TRC of magnesium alloy AZ31, 2) the feasibility of producing clad magnesium strip via TRC and 3) the effect of scale-up (moving from a laboratory unit to commercial production) will have on the TRC process for magnesium.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

527-533

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Liang, C. B. Cowley, Journal of the Minerals, Metals and Materials Society, 56-5 (2004) 26-28.

Google Scholar

[2] E. E. M. Luiten, K. Blok, Energy Policy, 31 (2003) 1339-1356.

Google Scholar

[3] I. H. Jung, Mg Twin-Roll Casting, Magnesium Processing Technology Workshop, McGill University, Montreal, (2008).

Google Scholar

[4] H. Watari, T. Haga, R. Paisern, N. Koga, K. Davey, Key Engineering Materials, 345-346 (2007) 165-168.

DOI: 10.4028/www.scientific.net/kem.345-346.165

Google Scholar

[5] A. Hadadzadeh, M. A. Wells, Journal of Magnesium and Alloys 1 (2013) 101-114.

Google Scholar

[6] A. Hadadzadeh, M. A. Wells, International Journal of Cast Metals Research, 26-4 (2013) 228-238.

Google Scholar

[7] M. Aljarrah, E. Essadiqi, D. H. Kang, I. H. Jung, Materials Science Forum, 690 (2011) 331-334.

Google Scholar

[8] E. Essadiqi, I. H. Jung, M. A. Wells, in Advances in Wrought Magnesium Alloys-Fundamentals of Processing, Properties and Applications, (Eds. ) C. Bettles and M. Barnett, Sawston, Cambridge, Woodhead Publishing Limited, 2012, pp.272-303.

DOI: 10.1533/9780857093844.2.272

Google Scholar

[9] S. A. Lockyer, M. Yun, J. D. Hunt, D. V. Edmonds, Materials Characterization, 37 (1996) 301-310.

Google Scholar

[10] J. L. Hunter, USA Patent 2850776, 9 September (1958).

Google Scholar

[11] B. Q. Li, JOM, 47-5 (1995) 29-33.

Google Scholar

[12] C. Gras, M. Meredith, K. Gatenby, J. D. Hunt, Materials Science Forum, 396-402 (2002) 89-94.

DOI: 10.4028/www.scientific.net/msf.396-402.89

Google Scholar

[13] I. Jin, L. R. Morris, J. D. Hunt, Journal of Metals, 6 (1982) 70-74.

Google Scholar

[14] M. Yun, S. A. Lockyer, J. D. Hunt, International Journal of Cast Metals Research, 13 (2001) 255-261.

Google Scholar

[15] S. A. Lockyer, M. Yun, J. D. Hunt, D. V. Edmonds, Materials Science Forum, 217-222 (1996) 367-372.

DOI: 10.4028/www.scientific.net/msf.217-222.367

Google Scholar

[16] D. J. Monagham, M. B. Henderson, J. D. Hunt, D. V. Edmonds, Materials Science and Engineering A, 173 (1993) 251-254.

Google Scholar

[17] J.J. Kim, W. J. Park, D. Choo, in Magnesium Technology 2011 (eds W. H. Sillekens, S. R. Agnew, N. R. Neelameggham and S. N. Mathaudhu), John Wiley & Sons, Inc., Hoboken, NJ, USA.

DOI: 10.1002/9781118062029

Google Scholar

[18] B. Forbord, B. Andersson, F. Ingvaldsen, O. Austevik, J. A. Horst, I. Skauvik, Materials Science and Engineering A, 415 (2006) 12-20.

DOI: 10.1016/j.msea.2005.08.224

Google Scholar

[19] C. Gras, M. Meredith, J. D. Hunt, Journal of Materials Processing Technology, 167 (2005) 62-72.

Google Scholar

[20] M. Dunar, A. S. Akkurt, K. Sarioglu, C. Romanowski, in Light Metal 2003, 2003 TMS Annual Meeting & Exhibition, San Diego, CA, USA, 2003, pp.719-724.

Google Scholar

[21] A. K. P. Rao, K.H. Kim, J. H. Bae, G.T. Bae, D. H. Shin, N. J. Kim, Materials Science Forum, 618-619 (2009) 467-470.

DOI: 10.4028/www.scientific.net/msf.618-619.467

Google Scholar

[22] J. H. Bae, A. K. P. Rao, K.H. Kim, N. J. Kim, Scripta Materialia, 64 (2011) 836–839.

Google Scholar

[23] A. R. Baserinia, E. J. F. R. Caron, M. A. Wells, D. C. Weckman, S. Barker, M. Gallerneault, Metallurgical and Materials Transactions B, 44 (2013) 1017-1029.

DOI: 10.1007/s11663-013-9859-z

Google Scholar