[1]
B. Song, R.L. Xin, G. Chen, X.Y. Zhang, Q. Liu. Improving tensile and compressive properties of magnesium alloy plates by pre-cold rolling, Scr. Mater. 66 (2012) 1061-1064.
DOI: 10.1016/j.scriptamat.2012.02.047
Google Scholar
[2]
K. Máthis, J. Capek, Z. Zdrazilová, Z. Trojanová, Investigation of tension–compression asymmetry of magnesium by use of the acoustic emission technique, Mater. Sci. Eng. A, 528 (2011) 5904-5907.
DOI: 10.1016/j.msea.2011.03.114
Google Scholar
[3]
H. Friedrich, S. Schumann, Research for a "new age of magnesium" in the automotive industry, J Mater. Proc. Tech. 17(2001) 276-281.
Google Scholar
[4]
B.L Mordike, T Ebert, Magnesium: Properties-applications-potential, Mater. Sci. Eng. A. 302(2001)37-45.
Google Scholar
[5]
H. Zhang, G.S. Huang, L.F. Wang, J.H. Li, Improved formability of Mg–3Al–1Zn alloy by pre-stretching and annealing, 67(2012) 495-498.
DOI: 10.1016/j.scriptamat.2012.06.017
Google Scholar
[6]
J.A. Yasi, L.G. Hector Jr., D.R. Trinkle, Prediction of thermal cross-slip stress in magnesium alloys from a geometric interaction model, Acta Mater. 60(2012) 2350-2358.
DOI: 10.1016/j.actamat.2012.01.004
Google Scholar
[7]
J.A. Yasi, L.G. Hector Jr., D.R. Trinkle, Prediction of thermal cross-slip stress in magnesium alloys from direct first-principles data, Acta Mater. 59(2011) 5652-5660.
DOI: 10.1016/j.actamat.2011.05.040
Google Scholar
[8]
H. Zhang, G.S. Huang, D.Q. Kong, G.F. Sang, B. Song, Influence of initial texture on formability of AZ31B magnesium alloy sheets at different temperatures, 211(2011) 1575-1580.
DOI: 10.1016/j.jmatprotec.2011.04.009
Google Scholar
[9]
Z. Shahri, A. Zarei-Hanzaki, H.R. Abedi, S.M. Fatemi-Varzaneh, An investigation to the hot deformation characteristics of AZ31 alloy through continuous cooling compression testing method, Materials Design, 36(2012)470-476.
DOI: 10.1016/j.matdes.2011.10.050
Google Scholar
[10]
J.A. del Valle, F. Carreño, O.A. Ruano, Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling, Acta Mater. 54(2006) 4247-4259.
DOI: 10.1016/j.actamat.2006.05.018
Google Scholar
[11]
M.M Myshlyaev, H.J McQueen, A Mwembela, E Konopleva, Twinning, dynamic recovery and recrystallization in hot worked Mg–Al–Zn alloy, Mater. Sci. Eng. A 337(2002)121-133.
DOI: 10.1016/s0921-5093(02)00007-2
Google Scholar
[12]
C. Bruni, A. Forcellese, F. Gabrielli, M. Simoncini, Effect of temperature, strain rate and fibre orientation on the plastic flow behaviour and formability of AZ31 magnesium alloy, J Mater. Proc. Tech. 210 (2010) 1354–1363.
DOI: 10.1016/j.jmatprotec.2010.03.025
Google Scholar
[13]
M.T. Pérez-Prado, J.A. del Valle1, J.M. Contreras, O.A. Ruano, Microstructural evolution during large strain hot rolling of an AM60 Mg alloy, 50(2004) 661-665.
DOI: 10.1016/j.scriptamat.2003.11.014
Google Scholar
[14]
H.F. Zhang, Z.W. L, Study on punch die design and its production of magnesium alloy mobile telephone shell, Light Mater. 1(2006)44-48.
Google Scholar
[15]
Z.D. Zhao, Friction and lubrication in sheet metal stamping process, Metal forming Machinery ,1(1997)6-8.
Google Scholar