Forming of Seat Bidet by AZ31 Magnesium Alloy through Stamping Process

Article Preview

Abstract:

In this paper, the forming of a seat bidet at 150°Cand 200°C by AZ31 magnesium alloy through the stamping process was conducted. The microstructure and the press technology were investigated. The results show that the lubrication and temperature have an important impact on the stamping forming. The seat bidet can be forming successfully by warm stamping. While the defect and fracture behavior mainly occurs at the corner of the seat bidet and the slant groove in the center.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-109

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Song, R.L. Xin, G. Chen, X.Y. Zhang, Q. Liu. Improving tensile and compressive properties of magnesium alloy plates by pre-cold rolling, Scr. Mater. 66 (2012) 1061-1064.

DOI: 10.1016/j.scriptamat.2012.02.047

Google Scholar

[2] K. Máthis, J. Capek, Z. Zdrazilová, Z. Trojanová, Investigation of tension–compression asymmetry of magnesium by use of the acoustic emission technique, Mater. Sci. Eng. A, 528 (2011) 5904-5907.

DOI: 10.1016/j.msea.2011.03.114

Google Scholar

[3] H. Friedrich, S. Schumann, Research for a "new age of magnesium" in the automotive industry, J Mater. Proc. Tech. 17(2001) 276-281.

Google Scholar

[4] B.L Mordike, T Ebert, Magnesium: Properties-applications-potential, Mater. Sci. Eng. A. 302(2001)37-45.

Google Scholar

[5] H. Zhang, G.S. Huang, L.F. Wang, J.H. Li, Improved formability of Mg–3Al–1Zn alloy by pre-stretching and annealing, 67(2012) 495-498.

DOI: 10.1016/j.scriptamat.2012.06.017

Google Scholar

[6] J.A. Yasi, L.G. Hector Jr., D.R. Trinkle, Prediction of thermal cross-slip stress in magnesium alloys from a geometric interaction model, Acta Mater. 60(2012) 2350-2358.

DOI: 10.1016/j.actamat.2012.01.004

Google Scholar

[7] J.A. Yasi, L.G. Hector Jr., D.R. Trinkle, Prediction of thermal cross-slip stress in magnesium alloys from direct first-principles data, Acta Mater. 59(2011) 5652-5660.

DOI: 10.1016/j.actamat.2011.05.040

Google Scholar

[8] H. Zhang, G.S. Huang, D.Q. Kong, G.F. Sang, B. Song, Influence of initial texture on formability of AZ31B magnesium alloy sheets at different temperatures, 211(2011) 1575-1580.

DOI: 10.1016/j.jmatprotec.2011.04.009

Google Scholar

[9] Z. Shahri, A. Zarei-Hanzaki, H.R. Abedi, S.M. Fatemi-Varzaneh, An investigation to the hot deformation characteristics of AZ31 alloy through continuous cooling compression testing method, Materials Design, 36(2012)470-476.

DOI: 10.1016/j.matdes.2011.10.050

Google Scholar

[10] J.A. del Valle, F. Carreño, O.A. Ruano, Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling, Acta Mater. 54(2006) 4247-4259.

DOI: 10.1016/j.actamat.2006.05.018

Google Scholar

[11] M.M Myshlyaev, H.J McQueen, A Mwembela, E Konopleva, Twinning, dynamic recovery and recrystallization in hot worked Mg–Al–Zn alloy, Mater. Sci. Eng. A 337(2002)121-133.

DOI: 10.1016/s0921-5093(02)00007-2

Google Scholar

[12] C. Bruni, A. Forcellese, F. Gabrielli, M. Simoncini, Effect of temperature, strain rate and fibre orientation on the plastic flow behaviour and formability of AZ31 magnesium alloy, J Mater. Proc. Tech. 210 (2010) 1354–1363.

DOI: 10.1016/j.jmatprotec.2010.03.025

Google Scholar

[13] M.T. Pérez-Prado, J.A. del Valle1, J.M. Contreras, O.A. Ruano, Microstructural evolution during large strain hot rolling of an AM60 Mg alloy, 50(2004) 661-665.

DOI: 10.1016/j.scriptamat.2003.11.014

Google Scholar

[14] H.F. Zhang, Z.W. L, Study on punch die design and its production of magnesium alloy mobile telephone shell, Light Mater. 1(2006)44-48.

Google Scholar

[15] Z.D. Zhao, Friction and lubrication in sheet metal stamping process, Metal forming Machinery ,1(1997)6-8.

Google Scholar