Fracture Toughness and Fatigue Behavior of T7451 Al-Zn-Mg-Cu Alloy Thick Plate

Article Preview

Abstract:

The mechanical property, fracture toughness and fatigue behavior of T7451 Al-Zn-Mg-Cu alloy thick plates in different orientations and with various thicknesses were investigated by means of tensile, fatigue and plain strain fracture toughness testing. And the microstructures and fracture morphologies were analyzed with optical microscopy and scanning electron microscopy. The results showed that the samples in longitudinal (L)-transversal (T) orientation possessed better mechanical property, fracture toughness and fatigue resistance than that in T-L orientation. Fractography and optical microanalysis clearly demonstrated that the feature of recrystallized grains is the decisive factor for this anisotropy. On the other hand, values of strength and fracture toughness decreased with the increase of plate thickness, but their fatigue crack growth rate became slower. Combined with the fractography analysis, the increase of recrystallization degree and the coarser grains in the thicker plate should be the main reason for the detrimental to the strength and toughness properties since the main fracture mechanism changes from ductile transgranular fracture to intergranular failure. However, these coarse recrystallized grains play an advantageous role for fatigue resistance from crack deflection and closure perspectives.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

223-230

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. A. Starke Jr., J. T. Staley, Application of modern aluminum alloys to aircraft, Prog Aerosp Sci. 32(1996) 131-172.

Google Scholar

[2] A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W. S. Miller, Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng.A. 280(2000) 102-107.

DOI: 10.1016/s0921-5093(99)00674-7

Google Scholar

[3] N. M. Han, X. M. Zhang, S. D. Liu, B. Ke, X. Xin, Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050, Mater. Sci. Eng.A. 528(2011) 3714-3721.

DOI: 10.1016/j.msea.2011.01.068

Google Scholar

[4] N. M. Han, X. M. Zhang, S. D. Liu, D. G. He, R. Zhang, Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050, J Alloy Compd. 509(2011) 4138-4145.

DOI: 10.1016/j.jallcom.2011.01.005

Google Scholar

[5] Z. Li, B. Xiong, Y. Zhang, B. Zhu, F. Wang, H. Liu, Microstructural evolution of aluminum alloy 7B04 thick plate by various thermal treatments, T Nonferr Metal Soc. 18(2008) 40-45.

DOI: 10.1016/s1003-6326(08)60008-4

Google Scholar

[6] Z. Li, B. Xiong, Y. Zhang, B. Zhu, F. Wang, H. Liu, Investigation on strength, toughness and microstructure of an Al–Zn–Mg–Cu alloy pre-stretched thick plates in various ageing tempers, J Mater Process Tech. 209(2009) 2021-(2027).

DOI: 10.1016/j.jmatprotec.2008.04.052

Google Scholar

[7] J. Schubbe, Plate Thickness Variation Effects on Crack Growth Rates in 7050-T7451 Alloy Thick Plate, J Mater Eng Perform. 20(2011) 147-154.

DOI: 10.1007/s11665-010-9657-6

Google Scholar

[8] J. S. Robinson, R. L. Cudd, D. A. Tanner, G. P. Dolan, Quench sensitivity and tensile property inhomogeneity in 7010 forgings, J Mater Process Tech. 119(2001) 261-267.

DOI: 10.1016/s0924-0136(01)00927-x

Google Scholar

[9] S. Joel J., Fatigue crack propagation in 7050-T7451 plate alloy, Eng Fract Mech. 76(2009) 1037-1048.

DOI: 10.1016/j.engfracmech.2009.01.006

Google Scholar

[10] X. Zhang, W. Liu, S. Liu, M. Zhou, Effect of processing parameters on quench sensitivity of an AA7050 sheet, Mater. Sci. Eng.A. 528(2011) 795-802.

DOI: 10.1016/j.msea.2010.07.033

Google Scholar

[11] P. Li, B. Xiong, Y. Zhang, Z. Li, B. Zhu, F. Wang, H. Liu, Quench sensitivity and microstructure character of high strength AA7050, T Nonferr Metal Soc. 22(2012) 268-274.

DOI: 10.1016/s1003-6326(11)61170-9

Google Scholar

[12] D. Dumont, A. Deschamps, Y. Brechet, A model for predicting fracture mode and toughness in 7000 series aluminium alloys, Acta Mater. 52(2004) 2529-2540.

DOI: 10.1016/j.actamat.2004.01.044

Google Scholar

[13] T. Pardoen, D. Dumont, A. Deschamps, Y. Brechet, Grain boundary versus transgranular ductile failure, J Mech Phys Solids. 51(2003) 637-665.

DOI: 10.1016/s0022-5096(02)00102-3

Google Scholar

[14] G. Ludtka, D. Laughlin, The influence of microstructure and strength on the fracture mode and toughness of 7XXX series aluminum alloys, Metall Mater Trans A. 13(1982) 411-425.

DOI: 10.1007/bf02643350

Google Scholar

[15] N. Deshpande, A. Gokhale, D. Denzer, J. Liu, Relationship Between Fracture Toughness, Fracture Path, and Microstructure of 7050 Aluminum Alloy:Part I. Quantitative Characterization, Metall Mater Trans A. 29(1998) 1191-1201.

DOI: 10.1007/s11661-998-0246-3

Google Scholar

[16] B. Morere, J. Ehrström, P. Gregson, I. Sinclair, Microstructural effects on fracture toughness in AA7010 plate, Metall Mater Trans A. 31(2000) 2503-2515.

DOI: 10.1007/s11661-000-0195-y

Google Scholar

[17] S. Suresh, Further remarks on the micromechanisms of fatigue crack growth retardation following overloads, Eng Fract Mech. 21(1985) 1169-1170.

DOI: 10.1016/0013-7944(85)90175-4

Google Scholar