[1]
R. Grimes, A.J. Cornish, and W. S. Miller, Aluminum-lithium based alloys for aerospace application, Met. Mater. 1 (1985) 357-366.
Google Scholar
[2]
C.J. Williams, A.Jr. Starke, Progress in structural materials for aerospace systems , Acta Mater. 51(2003)5775-5799.
Google Scholar
[3]
V. Guillaumin, Aluminum-lithium alloys in airbus airframes, J. Aerospace Eng. 8(2005) 158-164.
Google Scholar
[4]
E.S. Balmuth, Application of Aluminum Alloy 2297 in Fighter Aircraft Structures, in: Proceedings from LiMat, Pusan, Korea, 2001, pp.6-10.
Google Scholar
[5]
S.J. Yang, Z. Lu, S.L. Dai, Y.F. Han, M.G. Yan, A new high strength and high tolerance-resistance Al-Li alloy, Trans. Nonferrous Met. Soc. China. 16(2006) 1649-1654.
Google Scholar
[6]
B.P. Mao, J.P. Li, J. Shen, Effect of Thermo-mechanical Heat Treatment on Microstructure and Mechanical Property of 2197 Al-Li alloy, Adv. Mater. Res. 284-286(2011)1621-1625.
DOI: 10.4028/www.scientific.net/amr.284-286.1621
Google Scholar
[7]
J. Jabra, M. Romios, J. Lai, E. lee, M. Setiawan, The Effect of Thermal Exposure on the Mechanical Properties of 2099-T6 Die Forgings, 2099-T83Extrusions, 7075-T7651 Plate, 7085-T7452 Die Forgings, 7085-T7651 Plate, and 2397-T87 Plate Aluminum Alloys, J. Mater. Eng. Perform. 15 (2006) 601-607.
DOI: 10.1361/105994906x136142
Google Scholar
[8]
J.G. Tang, X.M. Zhang, Y.L. Deng, X.Y. Du, Z.Y. Chen, Texture decomposition with particle swarm optimization method, Comput. Mater. Sci. 38 (2006) 395-399.
DOI: 10.1016/j.commatsci.2005.09.015
Google Scholar
[9]
J. Chen, L. Zhen, W. Shao, S. Dai, Y. Cui, Through-thickness texture gradient in AA 7055 aluminum alloy. Mater. Lett. 62 (2008) 88-90.
DOI: 10.1016/j.matlet.2007.04.074
Google Scholar
[10]
O. Engler, An EBSD local texture study on the nucleation of recrystallization at shear bands in the alloy Al-3% Mg, Scripta mater. 44 (2001) 229-236.
DOI: 10.1016/s1359-6462(00)00597-2
Google Scholar
[11]
O. Engler, C. Tomé, M.Y. Huh, A study of through-thickness texture gradients in rolled sheets, Metall. Mater. Trans. A . 31 (2000) 2299-2315.
DOI: 10.1007/s11661-000-0146-7
Google Scholar
[12]
T. Kamijo, S. Kataoka, H. Inagaki, Nucleation and growth of cube-oriented recrystallized grains in an aluminum single crystal of an s-orientation, Acta Metall. Mater. 41 (1993) 1713-1720
DOI: 10.1016/0956-7151(93)90190-4
Google Scholar
[13]
S.H. Hong, H.T. Jeong, C.H. Choi, D. Lee, Deformation and recrystallization textures of surface layer of copper sheet, Mater. Sci. Eng. A. 229 (1997) 174-181.
DOI: 10.1016/s0921-5093(96)10818-2
Google Scholar
[14]
C.H. Choi, J.W. Kwon, K.H. Oh, D.N. Lee, Analysis of deformation texture inhomogeneity and stability condition of shear components in fcc metals, Acta Mater. 45 (1997) 5119-5128.
DOI: 10.1016/s1359-6454(97)00169-9
Google Scholar
[15]
H. Vatne, R. Shahani, E. Nes, Deformation of cube-oriented grains and formation of recrystallized cube grains in a hot deformed commercial AlMgMn aluminium alloy, Acta Mater. 44 (1996) 4447-4462.
DOI: 10.1016/1359-6454(96)00077-8
Google Scholar
[16]
M. Starink, S. Wang, A model for the yield strength of overaged Al–Zn–Mg–Cu alloys, Acta Mater. 51 (2003) 5131-5150.
DOI: 10.1016/s1359-6454(03)00363-x
Google Scholar
[17]
A. Vasudevan, W. Fricke, R. Malcolm, R. Bucci, M. Przystupa, F. Barlat, On through thickness crystallographic texture gradient in Al-Li-Cu-Zr alloy, Metall. Mater. Trans. A. 19(1988) 731-732.
DOI: 10.1007/bf02649289
Google Scholar
[18]
D. Chakrabarti, H. Weiland, B. Cheney, J.T. Staley, Through thickness property variations in 7050 plate, Mater. Sci. Forum. 217-222(1996) 1085-1090.
DOI: 10.4028/www.scientific.net/msf.217-222.1085
Google Scholar
[19]
Z.H. Li, B.Q. Xiong, Y.A. Zhang, Investigation on strength, toughness and microstructure of an Al-Zn-Mg-Cu alloy prestretched thick plate in various ageing tempers, J. Mater. Process. Tech. 209 (2008) 2021-2027.
DOI: 10.1016/j.jmatprotec.2008.04.052
Google Scholar
[20]
D. Dumont, A. Deschamps, Y. Brechet, On the relationship between microstructu -re, strength and toughness in AA7050 aluminum alloy, Mater. Sci. Eng. A. 356(2003) 326-336.
DOI: 10.1016/s0921-5093(03)00145-x
Google Scholar
[21]
R.J. Rioja, Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications, Mater. Sci. Eng. A. 257(1998) 100-107.
DOI: 10.1016/s0921-5093(98)00827-2
Google Scholar
[22]
K.T. Venkateswara, R.O. Ritchie, Mechanical properties of Al-Li alloys Part 1Fracure toughness and microstructure, Mater. Sci. Tech. 70(1989) 882-895.
DOI: 10.1179/mst.1989.5.9.882
Google Scholar