[1]
R.D.K. Misra, Z. Jia, R.O'Malley, Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steel: The effect on mechanical properties, Mater. Sci. Eng., A 528 (2011) 8772-8780.
DOI: 10.1016/j.msea.2011.08.047
Google Scholar
[2]
L.H. Ki, P.G. Sang, K.C. Min, Characterization of transition behavior in SA508 Gr.4N Ni-Cr-Mo low alloy steels with microstructural alteration by Ni and Mo contents, Mater. Sci. Eng. A 529 (2011) 156-163.
DOI: 10.1016/j.msea.2011.09.012
Google Scholar
[3]
B.S. Lee, M.C. Kim, J.H. Yoon, Characterization of high strength and high toughness Ni-Mo-Cr low alloy steels for nuclear application, Int. J. Pres. Ves. Pip. 87 (2010) 74-80.
DOI: 10.1016/j.ijpvp.2009.11.001
Google Scholar
[4]
L.S. Woei, S.T. Tzay, Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions, J. Mater. Process. Technol. 87 (1999) 198-206.
DOI: 10.1016/s0924-0136(98)00351-3
Google Scholar
[5]
M.D. Michael, S.N. David, Nanoscale co-precipitation and mechanical properties of a high-trength low-carbon steel, Acta Mater. 59 (2011) 1881-1897.
Google Scholar
[6]
H.Y. Seung, S.Y. Sang, S.H. Chan, Effects of Mo, Cr and V additions on tensile and charpy impact properties of API X80 pipeline steels, Metall. Mater. Trans. A 40 (2009) 1851-1862.
DOI: 10.1007/s11661-009-9884-3
Google Scholar
[7]
F. Z. Qi, Diffusion and phase transition in solid metals, first ed., Mechanical Industry Press, Bei Jing, 1998.
Google Scholar
[8]
P. Michaud, D. Delagnes, P. Lamesle, The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels, Acta Mater. (2007) 4877-4889.
DOI: 10.1016/j.actamat.2007.05.004
Google Scholar
[9]
B. Chen, Z.G. Song, The effect of tempering precipitation on creep properties in a 1Cr10Co6MoVNbN steel, Iron and Steel (Chinese) 38 (2003) 47-51.
Google Scholar
[10]
N. Saeidi, A. Ekrami, Comparison of mechanical properties of martensite/ferrite and bainite/ferrite dual phase 4340 steels, Mater. Sci. Eng. A 523 (2009) 125-129.
DOI: 10.1016/j.msea.2009.06.057
Google Scholar
[11]
E. Chang, C.Y. Chang, C.D. Liu, The effects of double austenitization on the mechanical properties of a 0.34C containing low-alloy Ni-Cr-Mo-V steel, Metall. Mater. Trans. A 25 (1994) 545-555.
DOI: 10.1007/bf02651596
Google Scholar
[12]
F.G. Caballero, J. Chao, J. Cornide, Toughness deterioration in advanced high strength bainitic steels, Mater. Sci. Eng., A 525 (2009) 87-95.
DOI: 10.1016/j.msea.2009.06.034
Google Scholar
[13]
T. Wen, X.F. Hu, Y.Y. Song, D.S. Yan, L.J. Rong, Carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel with different V contents, Mater. Sci. Eng. A, 588 (2013) 201-207.
DOI: 10.1016/j.msea.2013.09.030
Google Scholar
[14]
F.B. Pickering, Physical Metallurgy and the Design of Steels, first ed., Applied Science Publishers, London, (1978)
Google Scholar
[15]
J.D. Embury, A. Kelly, R.B. Nicholson, Strengthening Methods in Crystals, first ed., Jone Wiley & Sons, New York, (1971)
Google Scholar
[16]
S.H. Zhang, Alloy-steel, first ed., Metallurgical Industry Press, Beijing, (1981)
Google Scholar
[17]
Y. Zhang: Ph. D. Thesis, Dalian Maritime University, 2007.
Google Scholar
[18]
V. Trabadelo, S. Gimenez, T. G. Acebo, I. Iturriza, Critical assessment of computational thermodynatics in the alloy design of PM high speed steels, Scripta. Mater. 53 (2005) 287-292.
DOI: 10.1016/j.scriptamat.2005.04.017
Google Scholar