[1]
Yanqiu Wang, Development of automobile wheel steels, North Vanadium Titanium. 2(2011) 15-17.
Google Scholar
[2]
T. Shimizu, Y. Funakawa, S. Kaneko, High strength steel sheets for automobile suspension and chassis use-high strength hot-rolled steel sheets with excellent press formability and durability for critical safety parts, JFE Technical Report. 4(2004) 25-30.
DOI: 10.4271/930283
Google Scholar
[3]
M. Sudo, T. Iwai, Deformation behavior and mechanical properties of ferrite-bainite-martensite (triphase) steel, Transactions ISIJ. 23(1983) 294-302.
DOI: 10.2355/isijinternational1966.23.294
Google Scholar
[4]
M. Sudo, S. I. Hashimoto, S. Kambe, Niobium bearing ferrite-bainite high strength hot-rolled sheet steel with improved formability, Transactions ISIJ. 23(1983) 303-311.
DOI: 10.2355/isijinternational1966.23.303
Google Scholar
[5]
A. Kumar, S. B. Singh, K. K. Ray, Influence of bainite/mastensite-content on the tensile properties of low carbon dual-phase steels, Materials Science and Engineering A. 474(2008) 270-282.
DOI: 10.1016/j.msea.2007.05.007
Google Scholar
[6]
Masayuki Kinoshita, Hot-rolled high strength steels with excellent stretch-flangeable property, Wuhan Iron and Steel Corporation Technology. 10(1995) 44-50.
Google Scholar
[7]
Yonglin Kang, Control of Quality and Formability of Modern Car Sheet, Beijing, 1999.
Google Scholar
[8]
X. Fang, Z. Fan, B. Ralph, The relationships between tensile properties and hole expansion property of C-Mn steels, Journal of Materials Science. 38(2003) 3877-3882.
Google Scholar
[9]
K. Kamibayashi, Y. Tanabe, Y. Takemoto, I. Shimizu, T. Senuma, Influence of Ti and Nb on the strength-ductility-hole expansion ratio balance of hot-rolled low carbon high-strength steel sheets, ISIJ International. 52(2012) 151-157.
DOI: 10.2355/isijinternational.52.151
Google Scholar
[10]
D. H. Hanlon, J. Sietsma, S. V. Zwaag, The effect of plastic deformation of austenite on the kinetics of subsequent ferrite formation, ISIJ International. 41(2001) 1028-1036.
DOI: 10.2355/isijinternational.41.1028
Google Scholar
[11]
P. Cizek, B. P. Wynne, C. H. J. Davies, B. C. Muddle, P. D. Hodgson, Effect of composition and austenite deformation on the transformation characteristics of low-carbon and ultra-carbon microalloyed steels, Metallurgical and Materials Transactions A. 33A(2002) 1331-1349.
DOI: 10.1007/s11661-002-0059-8
Google Scholar
[12]
Yi Dong, Xiaoguang Shi, Bin Han, Effect of finishing temperature on microstructure and properties of fine grained hot-rolled dual-phase steel, Heat Treatment of Metals. 36(2011) 64-67.
Google Scholar
[13]
Yi Dong, Xiaoguang Shi, Bin Han, Rendong Liu, Effect of finishing temperature on the microstructure and mechanical properties of Si-Mn hot-rolled dual-phase steel, Journal of Plasticity Engineering. 18(2011) 81-84.
Google Scholar
[14]
Wenjin Nie, Chengjia Shang, Hailong Guan, Xiaobing Zhang, Shaohui Chen, Control of microstructures of ferrite/bainite (F/B) dual-phase steels and analysis of their resistance to deformation behavior, Acta metallurgical sinica. 48(2012) 298-306.
DOI: 10.3724/sp.j.1037.2011.00634
Google Scholar
[15]
E. A. Wilson, The γ→α transformation in low carbon irons, ISIJ International. 34 (1994) 615-630.
DOI: 10.2355/isijinternational.34.615
Google Scholar
[16]
Y. V. Leeuwen, Sietsma , S. V. Zwaag, The influence of carbon diffusion on the character of γ→α the phase transformation in steel, ISIJ International. 43(2003) 767-773.
DOI: 10.2355/isijinternational.43.767
Google Scholar
[17]
W. C. Jeong, Strength and formability of ultra-low-carbon Ti-IF steels, Metallurgical and Materials Transactions A. 31A(2000) 1305-1306.
DOI: 10.1007/s11661-000-0125-z
Google Scholar