[1]
L. Liu, J. Zhang, J. Shen, T.W. Huang, H.Z. Fu, Advances in directional solidification techniques of superalloys, Materials China. 29(2010) 1-9.
Google Scholar
[2]
A.J. Elliott, S. Tin, W.T. King, S.C. Huang, M. Gigliotti, Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment, Metall. Mater. Trans. 35(2004) 3221-3231.
DOI: 10.1007/s11661-004-0066-z
Google Scholar
[3]
J. Zhang, L. Lou, Directional solidification assisted by liquid metal cooling, J. Mater. Sci. Technol. 23(2007) 289-299.
Google Scholar
[4]
M.L. Clemens, A. Price, R.S. Bellows. Advanced solidification processing of an industrial gas turbine engine component, JOM. 55(2003) 27-31.
DOI: 10.1007/s11837-003-0156-1
Google Scholar
[5]
Yu A. Bondarenko, E.N. Kablov, Directional crystallization of high-temperature alloys with elevated temperature gradient, Metal Sci. Heat Treat. 44 (2002) 288~291.
Google Scholar
[6]
L. Liu, F. Sommer, H.Z. Fu, Effect of solidification conditions on MC carbides in a Nickel-base superalloy IN738 LC, Script. Metall. Mater. 30(1994) 587-591.
DOI: 10.1016/0956-716x(94)90434-0
Google Scholar
[7]
M. Vijayakumar, S.N. Tewari, Dendrite spacing in directionally solidification alloy PWA-1480, Mater. Sci. Eng. A. 132(1991) 195-201.
DOI: 10.1016/0921-5093(91)90375-w
Google Scholar
[8]
P.C. Xia, W.F. Yu, J.J. Yu, W. L, X.F. Sun, H.R. Guan, Z.Q. Hu, Influence of standard heat treatment on microstructure and mechanical property of DZ951 alloy , Trans. Mater. heat treat. 29(2008) 96-99.
DOI: 10.1016/s1001-0521(08)60118-7
Google Scholar
[9]
H. Chen, J.X. Dong, M.C. Zhang, Effect of heat treatment process on microstructure of cast superalloy K480, Trans. Mater. Heat Treat. 33(2012) 37-44.
Google Scholar
[10]
S.R. Hegde R.M. Kearsey J.C. Beddoes, Designing homogenization-solution heat treatments for single crystal superalloys, Mater. Sci. Eng. A. 527(2010) 5528-5538.
DOI: 10.1016/j.msea.2010.05.019
Google Scholar
[11]
J.S. Li, W.M. Zhang, H.C. Kou, S.M. Li, F.S. Zhang, R. Hu, L. Liu, H.Z. Fu, Effect of structure refining on heat-treated structures and mechanical properties in single crystal superalloy, The Chinese Journal of Nonferrous Metals.12(2002) 290-293.
Google Scholar
[12]
W.G. Zhang, L. Liu, X.B. Zhao, T.W. Huang, Z.H. Yu, M. Qu, H.Z. Fu, Effect of directional solidification cooling rates on dendrite spacings of DZ125 alloy under high thermal gradient, Rare Met. 28(2009) 633-638.
DOI: 10.1007/s12598-009-0121-4
Google Scholar
[13]
W.G. Zhang, L. Liu, T.W. Huang, X.B. Zhao, Z.H. Yu, H.Z. Fu, Effect of cooling rate on γ' precipitate of DZ4125 alloy under high thermal gradient directional solidification, Acta Metall. Sin. 45(2009) 592-596.
Google Scholar
[14]
Y.Z. Shen, D.L. Lin, S.H. Huang, Mechanical properties and effect factors of new type directionally solidified superalloy, Mater. Mechanical Eng. 19(1995) 15-18.
Google Scholar
[15]
J.K. Tien, P.W. Keefe, J.P. Collier. The Role of Refractory Elements in Nickel-Base Superalloys, An Overview, ASM Conference on Refractory Alloying Elements in Superalloys, ASM Press, Metals Park, OH. (1984) 1–14.
DOI: 10.7449/1989/superalloys_1989_553_566
Google Scholar
[16]
W.G. Zhang, L. Liu, H.Z. Fu, Effect of cooling rate on MC carbide in directionally solidified nickel-based superalloy under high thermal gradient, China Foundry. 9(2012) 11-14.
Google Scholar