Preparation and Biological Characterization of Electrospun Aligned Poly(butylene carbonate) Nano-Fibers

Article Preview

Abstract:

A novel biomaterial poly (butylene carbonate) (PBC) was used to fabricate aligned nanofibresby electrospinning with a high-speed transfer roller as the receiving device. The morphology of the fibers was evaluated by scanning electron microscopy (SEM). To expand the application of the biomaterial, cold plasma treatment and induced grafting technology were applied to improve its hydrophilicity and biocompatibility. The properties of the fibers, pretreated withhelium and following grafting with gelatin,were evaluated with X-ray photoelectron spectroscopy. The cytotoxicity of the materials to Schwann cells (RSC96) was investigated. Results indicated that aligned nanofibers can be received at high rotation speed.After plasma pretreatment, the activity of the surface was improved significantly and the grafting reaction was successful. SEM observations showed that cells can grow on the fibersurface along the direction of fiberorientation after seeding with RSC96 for 3 and 5 days. Modification of the nanofibersurface with gelatin significantly increased RSC96 attachment and proliferation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-129

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Wang, A. C. A. Wan, X. Xu, S. Gao, H. Mao, K. W. Leong, and H. Yu:'A new nerve guide conduit material composed of a biodegradable poly(phosphoester)', Biomaterials. 22(2001) 1157-1169.

DOI: 10.1016/s0142-9612(00)00356-2

Google Scholar

[2] A. S. Chandure S. S. Umare and R. A. Pandey:'Synthesis and biodegradation studies of 1,3-propanediol based aliphatic poly(ester carbonate)s', Eur.Polym. J.,44(2008) 2068-2086.

DOI: 10.1016/j.eurpolymj.2008.01.001

Google Scholar

[3] Y. Yu, D. Wu, C. Liu, Z. Zhao, Y. Yang, and Q. Li:'Lipase/esterase-catalyzed synthesis of aliphatic polyesters via polycondensation: A review', Process Biochem. 47(2012) 1027-1036.

DOI: 10.1016/j.procbio.2012.04.006

Google Scholar

[4] W. Liu, B. Chen, F. Wang, T. Tan, and L. Deng:'Lipase-catalyzed synthesis of aliphatic polyesters and properties characterization', Process Biochem. 46(2011) 1993-2000.

DOI: 10.1016/j.procbio.2011.07.008

Google Scholar

[5] W. Zhu, C. Li, D. Zhang, G. Guan, Y. Xiao, and L. Zheng:'Thermal degradation mechanism of poly(butylene carbonate)',Polym.Degrad.Stabil. 97(2012) 1589-1595.

DOI: 10.1016/j.polymdegradstab.2012.06.029

Google Scholar

[6] L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M. Nasr-Esfahani, and S. Ramakrishna: 'Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering', Biomaterials.29(2008) 4532-4539.

DOI: 10.1016/j.biomaterials.2008.08.007

Google Scholar

[7] W. Huang, X. Shi, L. Ren, C. Du, and Y. Wang:'PHBV microspheres - PLGA matrix composite scaffold for bone tissue engineering', Biomaterials.31(2010) 4278-4285.

DOI: 10.1016/j.biomaterials.2010.01.059

Google Scholar

[8] H. C. Ni, Z. Y. Lin, S. H. Hsu, and I. M. Chiu: 'The use of air plasma in surface modification of peripheral nerve conduits',ActaBiomaterialia.6(2010) 2066-2076.

DOI: 10.1016/j.actbio.2009.12.038

Google Scholar

[9] S. Chang and C. Chian:'Plasma surface modification effects on biodegradability and protein adsorption properties of chitosan films', Appl. Surf. Sci.282(2013) 735-740.

DOI: 10.1016/j.apsusc.2013.06.044

Google Scholar

[10] K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee:'The change of bead morphology formed on electrospun polystyrene fibres', Polymer.44(2003) 4029-4034.

DOI: 10.1016/s0032-3861(03)00345-8

Google Scholar

[11] P. K. Baumgarten:'Electrostatic spinning of acrylic microfibres', J Colloid Interf. Sci. 36(1971) 71-79.

Google Scholar

[12] M. Deng, G. Chen, D. Burkley, J. Zhou, D. Jamiolkowski, Y. Xu, and R. Vetrecin:'A study on in vitro degradation behavior of a poly(glycolide-co-l-lactide) monofilament', ActaBiomaterialia.4(2008) 1382-1391.

DOI: 10.1016/j.actbio.2008.03.011

Google Scholar

[13] J. Chen and C. Su:'Surface modification of electrospun PLLA nanofibres by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering', ActaBiomaterialia.7(2011) 234-243.

DOI: 10.1016/j.actbio.2010.08.015

Google Scholar

[14] G. M. L. Messina C. Satriano and G. Marletta:'A multitechnique study of preferential protein adsorption on hydrophobic and hydrophilic plasma-modified polymer surfaces', Colloids and Surfaces B: Biointerfaces.70(2009) 76-83.

DOI: 10.1016/j.colsurfb.2008.12.013

Google Scholar

[15] K. R. Kull M. L. Steen and E. R. Fisher:'Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes', J Membrane Sci. 246(2005)203-215.

DOI: 10.1016/j.memsci.2004.08.019

Google Scholar

[16] B. M. P. Ferreira, L. M. P. Pinheiro, P. A. P. Nascente, M. J. Ferreira, and E. A. R. Duek; 'Plasma surface treatments of poly(l-lactic acid) (PLLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)', Materials Science and Engineering: C.29(2009) 806-813.

DOI: 10.1016/j.msec.2008.07.026

Google Scholar

[17] D. Bodas and C. Khan-Malek: 'Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments', Microelectron Eng. 83(2006) 1277-1279.

DOI: 10.1016/j.mee.2006.01.195

Google Scholar

[18] E. Kim Q. Yu and B. Deng:'Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling', Appl. Surf. Sci. 257(2011) 9863-9871.

DOI: 10.1016/j.apsusc.2011.06.059

Google Scholar

[19] S. D. Wolter J. R. Piascik and B. R. Stoner:'Characterization of plasma fluorinated zirconia for dental applications by X-ray photoelectron spectroscopy', Appl. Surf. Sci. 257(2011) 10177-10182.

DOI: 10.1016/j.apsusc.2011.07.013

Google Scholar

[20] H. K. Dhiman A. R. Ray and A. K. Panda:'Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen', Biomaterials. 26(2005) 979-986.

DOI: 10.1016/j.biomaterials.2004.04.012

Google Scholar

[21] X. Kang, Y. Xie, H. M. Powell, L. James Lee, M. A. Belury, J. J. Lannutti, and D. A. Kniss:'Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds', Biomaterials.28(2007) 450-458.

DOI: 10.1016/j.biomaterials.2006.08.052

Google Scholar

[22] S. Y. Chew, R. Mi, A. Hoke, and K. W. Leong:'The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation', Biomaterials.29(2008) 653-661.

DOI: 10.1016/j.biomaterials.2007.10.025

Google Scholar

[23] P. Arpornmaeklong P. Pripatnanont and N. Suwatwirote:'Properties of chitosan–collagen sponges and osteogenic differentiation of rat-bone-marrow stromal cells', Int. J Oral Ma. Surg. 37(2008) 357-366.

DOI: 10.1016/j.ijom.2007.11.014

Google Scholar

[24] J. Y. Lee, C. A. Bashur, A. S. Goldstein, and C. E. Schmidt:'Polypyrrole-coated electrospun PLGA nanofibres for neural tissue applications', Biomaterials.30(2009) 4325-4335.

DOI: 10.1016/j.biomaterials.2009.04.042

Google Scholar

[25] S. Martino, F. D'Angelo, I. Armentano, J. M. Kenny, and A. Orlacchio:'Stem cell-biomaterial interactions for regenerative medicine', Biotechnol. Adv. 30(2012) 338-351.

DOI: 10.1016/j.biotechadv.2011.06.015

Google Scholar