Preparation and Characterization of Ethylene-Octene Copolymer/Modified Nanosilica Composites by Radiation Processing

Article Preview

Abstract:

Modified nanosilica (M-SiO2) by coupling agent (KH570, γ-MPS) with C=C bond reinforced ethylene-octene copolymer (POE) nanocomposites were prepared by melt blend, and then irradiated by γ-rays under nitrogen. The results of the crosslinking degree measurement revealed that the crosslinking degree of POE/modified nanosilica composites depended on the modified nanosilica particle size, content and the absorbed dose. Compared with the gel fraction of neat POE which is about 1.8%, the gel fraction of POE/15-M-SiO2-20 improves significantly to 34.2% at very low dose of 40kGy. Moreover, when nanosilica particle size become smaller, the sensitization effect is more obvious at a constant loading level. In comparison to the neat POE with a tensile strength of 22.6MPa, the tensile strength of POE/15-M-SiO2-10 nanocomposites increased to 29.1MPa with an absorbed dose of 100kGy, whereas their elongation at break were gradually reduced with an increasing absorbed dose. The improvement of gel content led to the enhancement of thermal deformation performance of POE/M-SiO2 nanocomposites attributed to the formation of crosslinked network between POE and modified nanosilica by radiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

136-141

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Hui, T.K. Chaki, S. Chattopadhyay, Exploring the simultaneous effect of nano-silica reinforcement and electron-beam irradiation on a model LDPE/ EVA-based TPE system, Polym. Int. 58 (2009) 680-690.

DOI: 10.1002/pi.2579

Google Scholar

[2] Z.B. Wang, X.K. Cheng, J. Zhao, Dynamically vulcanized blends of polyethylene-octene elastomer and ethylene-propylene-dine terpolymer, Mater. Chem. Phys. 126 (2011) 272-277.

DOI: 10.1016/j.matchemphys.2010.11.027

Google Scholar

[3] S. Bensason, S. Nazarenko, S. Chum, et al., Blends of homogeneous ethylene-octene copolymers, Polymer 38 (1997) 3513-3520.

DOI: 10.1016/s0032-3861(96)00906-8

Google Scholar

[4] R.S. Benson, E.A. Moore, M.E.M. Pardo, et al., Effect of gamma irradiation on ethylene-octene copolymers produced by constrained geometry catalyst, Nucl. Instr. Meth. Phys. Res. B 151 (1999) 174-180.

DOI: 10.1016/s0168-583x(99)00143-3

Google Scholar

[5] J.K. Choi, C.H. Jung, D.K. Kim, et al., Preparation of polymer/POSS nanocomposites by radiation processing, Radiat. Phys. Chem. 78 (2009) 517-520.

Google Scholar

[6] H. Liu and C. Brinson, Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites, Compos. Sci. Technol. 68 (2008) 1502-1512.

DOI: 10.1016/j.compscitech.2007.10.033

Google Scholar

[7] C.S. Hu and H.T. Liao, Modification of polyethylene–octene elastomer by silica through a sol–gel process, J. Appl. Polym. Sci. 88 (2003) 966-972.

DOI: 10.1002/app.11725

Google Scholar

[8] M. Bailly, M. Kontopoulou and K.E. Mabrouk, Effect of polymer/filler interactions on the structure and rheological properties of ethylene-octene copolymer/nanosilica composites, Polymer 51 (2010) 5506-5515.

DOI: 10.1016/j.polymer.2010.09.051

Google Scholar

[9] Y.W. Chang and Y. Lee, Preparation and properties of polyethylene-octene elastomer (POE)/organoclay nanocomposites, Polym. Bull. 68 (2012) 483-492.

DOI: 10.1007/s00289-011-0641-6

Google Scholar

[10] M. Maiti, S. Sadhu and A.K. Bhowmick, Ethylene-Octene Copolymer (Engage)-Clay Nanocomposites: Preparation and Characterization, J. Appl. Polym. Sci. 101 (2006) 603-610.

DOI: 10.1002/app.23348

Google Scholar

[11] G. Latta, Q. Lineberry, R. Ozao, et al., Thermal properties of ethylene octene copolymer (Engage)/ dimethyldioctadecyl quaternary ammonium chloride- modified montmorillonite clay nanocomposites, J. Mater. Sci. 43 (2008) 2555-2561.

DOI: 10.1007/s10853-008-2468-6

Google Scholar

[12] S.H. Qin, Q.F. Li, J. Yu, et al., Thermal properties and flame-retardancy of ethylene-octene copolymer/organ-montmorillonite nanocomposites. J. Appl. Polym. Sci. 127 (2012) 1323-1329.

DOI: 10.1002/app.37650

Google Scholar

[13] O. Osazuwa, K. Petrie, M. Kontopoulou, et al., Characterization of non-covalently, non-specifically functionalized multi-wall carbon nanotubes and their melt compounded composites with an ethylene-octene copolymer, Compos. Sci. Technol. 73 (2012) 27-33.

DOI: 10.1016/j.compscitech.2012.08.015

Google Scholar

[14] W. Zhai, J. Wang, N. Chen, et al., The orientation of carbon nanotubes in poly(ethylene-co-octene) microcellular foaming and its suppression effect on cell coalescence, Polym. Eng. Sci. 52 (2012) 2078-2089.

DOI: 10.1002/pen.23157

Google Scholar

[15] B. Wang, L. Song, N. Hong, et al., Effect of electron beam irradiation on the mechanical and thermal properties of intumescent flame retarded ethylene-vinyl acetate copolymer/organically modified montmorillonite nanocomposites, Radiat. Phys. Chem. 80 (2011) 1275-1281.

DOI: 10.1016/j.radphyschem.2011.06.008

Google Scholar

[16] U. Schulze, P.S. Majumder, G. Heinrich, et al., Electron beam crosslinking of atactic poly(propylene): development of a potential novel elastomer, Macromol. Mater. Eng. 293 (2008) 692–699.

DOI: 10.1002/mame.200800093

Google Scholar

[17] W. Kamphunthong and K. Sirisinha, Thermal property improvement of ethylene-octene copolymer through the combined introduction of filler and silane crosslink, J. Appl. Polym. Sci. 115 (2010) 424-430.

DOI: 10.1002/app.31017

Google Scholar

[18] S.F. Zhu, M.W. Shi, M.F. Zhu. Thermal and anti-dripping properties of γ-irradiated PA6 fiber with the presence of sensitizers, Mater. Lett. 99 (2013) 28-30.

DOI: 10.1016/j.matlet.2012.10.052

Google Scholar

[19] R. Chowdhury and M.S. Banerji, Electron beam irradiation of ethylene- propylene terpolymer: evaluation of trimethylol propane trimethacrylate as a crosslink promoter, J. Appl. Polym. Sci. 97 (2005) 968–975.

DOI: 10.1002/app.21795

Google Scholar

[20] K.A. Dubey, Y.K. Bhardwaj, C.V. Chaudhari, et al., Radiation processed ethylene vinyl acetate- multiple walled carbon nanotube nano-composites: Effect of MWNT addition on the gel content and crosslinking density, Express Polym. Lett. 3 (2009) 492-500.

DOI: 10.3144/expresspolymlett.2009.61

Google Scholar

[21] K.S. Wilson, K. Zhang, and J.M. Antonucci, Systematic variation of interfacial phase reactivity in dental nanocomposites, Biomaterials 26 (2005) 5095-5103.

DOI: 10.1016/j.biomaterials.2005.01.008

Google Scholar

[22] J.Q. Li, J. Peng, J.L. Qiao, et al., Effect of gamma irradiation on ethylene-octene copolymers, Radiat. Phys. Chem. 63 (2002) 501-504.

DOI: 10.1016/s0969-806x(01)00633-8

Google Scholar