[1]
S. Hui, T.K. Chaki, S. Chattopadhyay, Exploring the simultaneous effect of nano-silica reinforcement and electron-beam irradiation on a model LDPE/ EVA-based TPE system, Polym. Int. 58 (2009) 680-690.
DOI: 10.1002/pi.2579
Google Scholar
[2]
Z.B. Wang, X.K. Cheng, J. Zhao, Dynamically vulcanized blends of polyethylene-octene elastomer and ethylene-propylene-dine terpolymer, Mater. Chem. Phys. 126 (2011) 272-277.
DOI: 10.1016/j.matchemphys.2010.11.027
Google Scholar
[3]
S. Bensason, S. Nazarenko, S. Chum, et al., Blends of homogeneous ethylene-octene copolymers, Polymer 38 (1997) 3513-3520.
DOI: 10.1016/s0032-3861(96)00906-8
Google Scholar
[4]
R.S. Benson, E.A. Moore, M.E.M. Pardo, et al., Effect of gamma irradiation on ethylene-octene copolymers produced by constrained geometry catalyst, Nucl. Instr. Meth. Phys. Res. B 151 (1999) 174-180.
DOI: 10.1016/s0168-583x(99)00143-3
Google Scholar
[5]
J.K. Choi, C.H. Jung, D.K. Kim, et al., Preparation of polymer/POSS nanocomposites by radiation processing, Radiat. Phys. Chem. 78 (2009) 517-520.
Google Scholar
[6]
H. Liu and C. Brinson, Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites, Compos. Sci. Technol. 68 (2008) 1502-1512.
DOI: 10.1016/j.compscitech.2007.10.033
Google Scholar
[7]
C.S. Hu and H.T. Liao, Modification of polyethylene–octene elastomer by silica through a sol–gel process, J. Appl. Polym. Sci. 88 (2003) 966-972.
DOI: 10.1002/app.11725
Google Scholar
[8]
M. Bailly, M. Kontopoulou and K.E. Mabrouk, Effect of polymer/filler interactions on the structure and rheological properties of ethylene-octene copolymer/nanosilica composites, Polymer 51 (2010) 5506-5515.
DOI: 10.1016/j.polymer.2010.09.051
Google Scholar
[9]
Y.W. Chang and Y. Lee, Preparation and properties of polyethylene-octene elastomer (POE)/organoclay nanocomposites, Polym. Bull. 68 (2012) 483-492.
DOI: 10.1007/s00289-011-0641-6
Google Scholar
[10]
M. Maiti, S. Sadhu and A.K. Bhowmick, Ethylene-Octene Copolymer (Engage)-Clay Nanocomposites: Preparation and Characterization, J. Appl. Polym. Sci. 101 (2006) 603-610.
DOI: 10.1002/app.23348
Google Scholar
[11]
G. Latta, Q. Lineberry, R. Ozao, et al., Thermal properties of ethylene octene copolymer (Engage)/ dimethyldioctadecyl quaternary ammonium chloride- modified montmorillonite clay nanocomposites, J. Mater. Sci. 43 (2008) 2555-2561.
DOI: 10.1007/s10853-008-2468-6
Google Scholar
[12]
S.H. Qin, Q.F. Li, J. Yu, et al., Thermal properties and flame-retardancy of ethylene-octene copolymer/organ-montmorillonite nanocomposites. J. Appl. Polym. Sci. 127 (2012) 1323-1329.
DOI: 10.1002/app.37650
Google Scholar
[13]
O. Osazuwa, K. Petrie, M. Kontopoulou, et al., Characterization of non-covalently, non-specifically functionalized multi-wall carbon nanotubes and their melt compounded composites with an ethylene-octene copolymer, Compos. Sci. Technol. 73 (2012) 27-33.
DOI: 10.1016/j.compscitech.2012.08.015
Google Scholar
[14]
W. Zhai, J. Wang, N. Chen, et al., The orientation of carbon nanotubes in poly(ethylene-co-octene) microcellular foaming and its suppression effect on cell coalescence, Polym. Eng. Sci. 52 (2012) 2078-2089.
DOI: 10.1002/pen.23157
Google Scholar
[15]
B. Wang, L. Song, N. Hong, et al., Effect of electron beam irradiation on the mechanical and thermal properties of intumescent flame retarded ethylene-vinyl acetate copolymer/organically modified montmorillonite nanocomposites, Radiat. Phys. Chem. 80 (2011) 1275-1281.
DOI: 10.1016/j.radphyschem.2011.06.008
Google Scholar
[16]
U. Schulze, P.S. Majumder, G. Heinrich, et al., Electron beam crosslinking of atactic poly(propylene): development of a potential novel elastomer, Macromol. Mater. Eng. 293 (2008) 692–699.
DOI: 10.1002/mame.200800093
Google Scholar
[17]
W. Kamphunthong and K. Sirisinha, Thermal property improvement of ethylene-octene copolymer through the combined introduction of filler and silane crosslink, J. Appl. Polym. Sci. 115 (2010) 424-430.
DOI: 10.1002/app.31017
Google Scholar
[18]
S.F. Zhu, M.W. Shi, M.F. Zhu. Thermal and anti-dripping properties of γ-irradiated PA6 fiber with the presence of sensitizers, Mater. Lett. 99 (2013) 28-30.
DOI: 10.1016/j.matlet.2012.10.052
Google Scholar
[19]
R. Chowdhury and M.S. Banerji, Electron beam irradiation of ethylene- propylene terpolymer: evaluation of trimethylol propane trimethacrylate as a crosslink promoter, J. Appl. Polym. Sci. 97 (2005) 968–975.
DOI: 10.1002/app.21795
Google Scholar
[20]
K.A. Dubey, Y.K. Bhardwaj, C.V. Chaudhari, et al., Radiation processed ethylene vinyl acetate- multiple walled carbon nanotube nano-composites: Effect of MWNT addition on the gel content and crosslinking density, Express Polym. Lett. 3 (2009) 492-500.
DOI: 10.3144/expresspolymlett.2009.61
Google Scholar
[21]
K.S. Wilson, K. Zhang, and J.M. Antonucci, Systematic variation of interfacial phase reactivity in dental nanocomposites, Biomaterials 26 (2005) 5095-5103.
DOI: 10.1016/j.biomaterials.2005.01.008
Google Scholar
[22]
J.Q. Li, J. Peng, J.L. Qiao, et al., Effect of gamma irradiation on ethylene-octene copolymers, Radiat. Phys. Chem. 63 (2002) 501-504.
DOI: 10.1016/s0969-806x(01)00633-8
Google Scholar