Raman Spectroscopy Studies on the Microstructure Evolution from Cellulose to Carbon Fiber

Article Preview

Abstract:

Microstructure evolution of cellulose-based carbon fibers during the heat-treatment process of pyrolysis and carbonization was studied by Raman spectroscopy. The characteristic peaks of cellulose fibers were weakened after a dry process at 100°C and absolutely disappeared after the pyrolysis temperature reached 150°C. For intermediates obtained in the temperature of 150-1300°C, two characteristic Raman peaks appeared at ~1360cm-1 and ~1580cm-1, meaning a transition state structure of carbon hexagonal plane started to form. Parameters including ID1/IG, ID2/IG and ID3/IG of the intermediates treated in the temperature of 150-1300°C were compared. All the parameters firstly decreased with the increasing heat treatment temperature until a maximum at ~400°C,and then the parameters decreased until the structure turned into a carbon fiber structure at 1300°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-162

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Frank, F. Hermanutz, M.R. Buchmeiser, Carbon Fibers: Precursors, Manufacturing, and Properties, Macromol. Mater. Eng. 6(2012) 493-501.

DOI: 10.1002/mame.201100406

Google Scholar

[2] A.G. Dumanlı, A.H. Windle, Carbon fibres from cellulosic precursors: a review, J. Mater. Sci. 10(2012) 4236-4250.

DOI: 10.1007/s10853-011-6081-8

Google Scholar

[3] M. MInus, S. Kumar, The processing, properties, and structure of carbon fibers, JOM. 2(2005) 52-58.

Google Scholar

[4] FuHe,JianguoZhao,RuneWang, Viscose-Based Carbon Fibre, New Chemical Materials. 01(1999) 3-10.

Google Scholar

[5] Q. Wu, N. Pan, K. Deng, D. Pan, Thermogravimetry–mass spectrometry on the pyrolysis process of Lyocell fibers with and without catalyst, Carbohydr. Polym. 2(2008) 222-228.

DOI: 10.1016/j.carbpol.2007.08.005

Google Scholar

[6] M. Tang, R. Bacon, Carbonization of cellulose fibers—I. Low temperature pyrolysis, Carbon. 3(1964) 211-220.

DOI: 10.1016/0008-6223(64)90035-1

Google Scholar

[7] I. Karacan, T. Soy, Enhancement of oxidative stabilization of viscose rayon fibers impregnated with ammonium sulfate prior to carbonization and activation steps, J. Appl. Polym. Sci. 2(2013) 1239-1249.

DOI: 10.1002/app.38496

Google Scholar

[8] Y.A. Kim, K. Fujisawa, H. Muramatsu, T. Hayashi, M. Endo, T. Fujimori, K. Kaneko, M. Terrones, J. Behrends, A. Eckmann, Raman spectroscopy of boron-doped single-layer graphene, ACS nano. 7(2012) 6293-6300.

DOI: 10.1021/nn301728j

Google Scholar

[9] L.G. Cançado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies, Nano letters. 8(2011) 3190-3196.

DOI: 10.1021/nl201432g

Google Scholar

[10] A. Paipetis, Stress Induced Changes in the Raman Spectrum of Carbon Nanostructures and Their Composites, In: Carbon Nanotube Enhanced Aerospace Composite Materials, Springer, 2013, pp.185-217.

DOI: 10.1007/978-94-007-4246-8_6

Google Scholar

[11] J.H. Wiley, R.H. Atalla, Band assignments in the Raman spectra of celluloses, Carbohydr. Res. 1987 113-129.

DOI: 10.1016/0008-6215(87)80306-3

Google Scholar

[12] K. Kong, L. Deng, I.A. Kinloch, R.J. Young, S.J. Eichhorn, Production of carbon fibres from a pyrolysed and graphitised liquid crystalline cellulose fibre precursor, J. Mater. Sci. 14(2012) 1-9.

DOI: 10.1007/s10853-012-6426-y

Google Scholar

[13] T. Kobayashi, K. Sumiya, Y. Fukuba, M. Fujie, T. Takahagi, K. Tashiro, Structural heterogeneity and stress distribution in carbon fiber monofilament as revealed by synchrotron micro-beam X-ray scattering and micro-Raman spectral measurements, Carbon. 5(2011) 1646-1652.

DOI: 10.1016/j.carbon.2010.12.048

Google Scholar

[14] K. Kavkler, A. Demšar, Examination of cellulose textile fibres in historical objects by micro-Raman spectroscopy, Spectrochim. Acta. Part A. 2(2011) 740-746.

DOI: 10.1016/j.saa.2010.12.006

Google Scholar

[15] K. Schenzel, S. Fischer, NIR FT Raman spectroscopy–a rapid analytical tool for detecting the transformation of cellulose polymorphs, Cellulose. 1(2001) 49-57.

Google Scholar

[16] H. Edwards, D. Farwell, D. Webster, FT Raman microscopy of untreated natural plant fibres, Spectrochim. Acta. Part A. 13(1997) 2383-2392.

DOI: 10.1016/s1386-1425(97)00178-9

Google Scholar

[17] L.M. Proniewicz, C. Paluszkiewicz, A. Wesełucha-Birczyńska, H. Majcherczyk, A. Barański, A. Konieczna, FT-IR and FT-Raman study of hydrothermally degradated cellulose, J. Mol. Struct. 1(2001) 163-169.

DOI: 10.1016/s0022-2860(01)00706-2

Google Scholar

[18] S. Vollebregt, R. Ishihara, F.D. Tichelaar, Y. Hou, C.I.M. Beenakker, Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers, Carbon. 10(2012) 3542-3554.

DOI: 10.1016/j.carbon.2012.03.026

Google Scholar

[19] G. Katagiri, H. Ishida, A. Ishitani, Raman spectra of graphite edge planes, Carbon. 4(1988) 565-571.

DOI: 10.1016/0008-6223(88)90157-1

Google Scholar

[20] Y. Wang, D.C. Alsmeyer, R.L. McCreery, Raman spectroscopy of carbon materials: structural basis of observed spectra, Chem. Mater. 5(1990) 557-563.

DOI: 10.1021/cm00011a018

Google Scholar

[21] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon. 8(2005) 1731-1742.

DOI: 10.1016/j.carbon.2005.02.018

Google Scholar

[22] E. Ebner, D. Burow, J. Panke, A. Börger, A. Feldhoff, P. Atanassova, J. Valenciano, M. Wark, E. Rühl, Carbon blacks for lead-acid batteries in micro-hybrid applications – Studied by transmission electron microscopy and Raman spectroscopy, J. Power Sources. 2013) 554-560.

DOI: 10.1016/j.jpowsour.2012.08.089

Google Scholar