Study on the Properties of Melamine Cyanurate Modified Polyamide 6 Nanocomposites with Different Dimensional Siliciferous Particles

Article Preview

Abstract:

Different dimensional siliciferous particles including silica (0D), halloysite nanotubes (HNTs,1D) and montmorillonite (MMT,2D) were melt blending with certain amount of melamine cyanurate and polyamide 6(PA6) by a twin-screw extruder. Characterization of the PA6 composites has been investigated using scan electron microscopy (SEM), thermal gravimetric analyzer (TGA), universal testing machine and limiting oxygen index instrument. SEM images indicate that the nanoparticles were uniformly dispersed in the PA6 but there was some aggregation of MCA in the composites. The incorporation of silica exerted a negative effect on the flame retardancy of PA6/MCA composite, whereas adding HNTs and MMT lead to the improvements of LOI value of 30.4 and 30.9 respectively. TGA results show that PA6/MCA/silica, PA6/MCA/HNTs and PA6/MCA/OMMT exhibit two degradation stages. Higher Tmax1 and Tmax2 appeared comparing with PA6/MCA. Char residue of PA6/MCA/OMMT at 600°C were elevated most. HNTs and OMMT can increase the tensile strength and elongation of PA6/MCA by universal testing machine results, even higher than pure PA6, showing enhanced effects of these 1D and 2D fillers. These could enhance strength of the char and finally increase the flame retardancy of PA6.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

169-173

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. M. Kim, G. H. Michler, F. Ania, F. J. B. Calleja, Temperature dependence of polymorphism in electrospun nanofibres of PA6 and PA6/clay nanocomposite, Polymer. 48(2007) 4814-4823.

DOI: 10.1016/j.polymer.2007.05.082

Google Scholar

[2] Y. J. Ryu, H. Y. Kim, K. H. Lee, H. C. Park, D. R. Lee, Transport properties of electrospun nylon 6 nonwoven mats, Eur. Polym. J. 39 (2003) 1883-1889.

DOI: 10.1016/s0014-3057(03)00096-x

Google Scholar

[3] Y. B. Cai, F. L. Huang, Q. F. Wei, L. Song, Y. Hu, Y. Ye, Y. Xu, W. D. Gao, Structure, morphology, thermal stability and carbonization mechanism studies of electrospun PA6/Fe-OMT nanocomposite fibers, Polym. Degrad. Stabil. 93(2008) 2180-2185.

DOI: 10.1016/j.polymdegradstab.2008.08.003

Google Scholar

[4] L. Song, Y. Hu, Z.H. Lin, S. Y. Xuan, S. F. Wang, Z. Y. Chen, W.C. Fan, Preparation and properties of halogen-free flame-retarded polyamide 6/organoclay nanocomposite, Polym. Degrad. Stabil. 86(2004) 535-540.

DOI: 10.1016/j.polymdegradstab.2004.06.007

Google Scholar

[5] U. A. Handge, K. Hedicke-Hochstotter, V. Altstadt, Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: Influence of molecular weight on thermal, mechanical and rheological properties, Polymer. 51(2010) 2690-2699.

DOI: 10.1016/j.polymer.2010.04.041

Google Scholar

[6] C. Liu, Y. F. Luo, X. Jia, B. C. Zhong, S. Q. Li, B. C. Guo, D. M. Jia, Enhancement of mechanical properties of poly(vinyl chloride) with polymethyl methacrylate-grafted halloysite nanotube, Express Polym. Lett. 5(2011) 591-603.

DOI: 10.3144/expresspolymlett.2011.58

Google Scholar

[7] D. C. O. Marney, L. J. Russell, D. Y. Wu, T. Nguyen, D. Cramm, N. Rigopoulos, N. Wright, M. Greaves, The suitability of halloysite nanotubes as a fire retardant for nylon 6, Polym. Degrad. Stabil. 93 (2008) 1971-1978.

DOI: 10.1016/j.polymdegradstab.2008.06.018

Google Scholar

[8] T. Kashiwagi, R. H. Harris, X. Zhang, R. M. Briber, B. H. Cipriano, S. R. Raghavan, W. H. Awad, J. R. Shields, Flame retardant mechanism of polyamide 6-clay nanocomposites, Polymer 45 (2004) 881-891.

DOI: 10.1016/j.polymer.2003.11.036

Google Scholar

[9] X. Y. Hao, G. S. Gai, J. P. Liu, Y. F. Yang, Y. H. Zhang, C. Nan, Flame retardancy and antidripping effect of OMT/PA nanocomposites, Mater. Chem. Phys. 96(2006) 34-41.

DOI: 10.1016/j.matchemphys.2005.05.054

Google Scholar

[10] M. Lewin, J. Zhang, E. Pearce, J. Gilman, Flammability of polyamide 6 using the sulfamate system and organo-layered silicatet, Polym. Adv. Technol. 18(2007) 737-745.

DOI: 10.1002/pat.964

Google Scholar

[11] J. B. Dahiya, M. Muller-Hagedorn, H. Bockhorn, B. K. Kandola, Synthesis and thermal behaviour of polyamide 6/bentonite/ammonium polyphosphate composites, Polym. Degrad. Stabil. 93 (2008) 2038-2041.

DOI: 10.1016/j.polymdegradstab.2008.02.016

Google Scholar

[12] A. Casu, G. Camino, M. De Giorgi, D. Flath, V. Morone, R. Zenoni, Fire-retardant mechanistic aspects of melamine cyanurate in polyamide copolymer, Polym. Degrad. Stab. 58(1997) 297-302.

DOI: 10.1016/s0141-3910(97)00061-x

Google Scholar

[13] J. Zhang, M. Lewin, E. Pearce, M. Zammarano, J. W. Gilman, Flame retarding polyamide 6 with melamine cyanurate and layered silicates, Polym. Advan. Technol. 19(2008) 928-936.

DOI: 10.1002/pat.1063

Google Scholar

[14] P. Gijsman, R. Steenbakkers, C. Furst, J. Kersjes, Differences in the flame retardant mechanism of melamine cyanurate in polyamide 6 and polyamide 66, Polym. Degrad. Stab. 78(2002) 219-224.

DOI: 10.1016/s0141-3910(02)00136-2

Google Scholar

[15] S. V. Levchik, G. F. Levchik, A. I. Balabanovich, G. Camino, L. Costa, Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free fire retardants, Polym. Degrad. Stab. 54(1996) 217-222.

DOI: 10.1016/s0141-3910(96)00046-8

Google Scholar

[16] L. J. Mathias, R. D. Davis, W. L. Jarrett, Observation of alpha and gamma crystal forms and amorphous regions of nylon 6-clay nanocomposites using solid-state N-15 nuclear magnetic resonance, Macromolecules 32(1999) 7958-7960.

DOI: 10.1021/ma991307p

Google Scholar

[17] J. Feng, J. W. Hao, J. X. Du, R. J. Yang, Using TGA/FTIR TGA/MS and cone calorimetry to understand thermal degradation and flame retardancy mechanism of polycarbonate filled with solid bisphenol A bis(diphenyl phosphate) and montmorillonite, Polym. Degrad. Stab. 97(2012) 605-614.

DOI: 10.1016/j.polymdegradstab.2012.01.011

Google Scholar