Preparation and Properties of Recycled-Polyester Nanocomposite Fibers Synergistic Modified with Phosphorus Containing Flame-Retardant and α-Zirconium Phosphate

Article Preview

Abstract:

Recycled-polyester (RPET) was melt blended with the phosphorus-containing flame retardant (FRP) and α-zirconium phosphate (α-ZrP). The thermal properties of RPET/FRP/α-ZrP composites were analyzed. Modified RPET fibers were prepared through melt spinning of dried RPET nanocomposite chips. The mechanical properties and fire-retardant properties of RPET/FRP/α-ZrP fibers containing different α-ZrP contents were tested. The results show that the synergism of α-ZrP and FRP exerts a positive effect on the mechanical and the flame-retardant property of RPET, leading to nanocomposite fibers of 1.9cN/dtex and 31.6% limiting oxygen index (LOI) value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-177

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.L. Maspoch, H.E. Ferrando, D. Vega, A. Gordillo, J.I. Velasco, A.B. Martinez, The effect of glass fibre and a phosphorus-containing flame retardant on the flammability of recycled PET, Macromol. Symp. 221 (2005) 174-184.

DOI: 10.1002/masy.200550318

Google Scholar

[2] S.J. Chang, F.C. Chang, Characterizations for blends of phosphorus-containing copolyester with poly(ethylene terephthalate), Polym. Eng. Sci. 38 (1998) 1471-1481.

DOI: 10.1002/pen.10318

Google Scholar

[3] S.J. Chang and F.C. Chang, Synthesis and characterization of copolyesters containing the phosphorus linking pendent groups , J. Appl. Polym. Sci. 72 (1999) 109-122.

DOI: 10.1002/(sici)1097-4628(19990404)72:1<109::aid-app12>3.0.co;2-q

Google Scholar

[4] D.Q. Chen, Y.Z. Wang, X.P. Hu, D.Y. Wang, M.H. Qu, B. Yang, Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics , Polym. Degrad. Stab. 88 (2005) 349-256.

DOI: 10.1016/j.polymdegradstab.2004.11.010

Google Scholar

[5] D.M. Ban, Y.Z. Wang, B. Yang, A novel non-dripping oligomeric flame retardant for polyethylene terephthalate , Eur. Polym. J. 40 (2004) 1909-1903.

DOI: 10.1016/j.eurpolymj.2004.03.013

Google Scholar

[6] X.H. Du, Y.Z. Wang, X.T. Chen, Properties of phosphorus-containing thermotropic liquid crystal copolyester poly(ethylene terephthalate) blends, Polym. Degrad. Stab. 88 (2005) 53-56.

DOI: 10.1016/j.polymdegradstab.2004.02.018

Google Scholar

[7] Y.L. Chang, Y.Z. Wang, D.M. Ban, A novel phosphorus-containing polymer as a high effective flame retardant, Macromol. Mater. Eng. 289 (2004) 703-707.

DOI: 10.1002/mame.200400064

Google Scholar

[8] S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing , Prog. Polym. Sci. 28 (2003) 1539-1641.

DOI: 10.1016/j.progpolymsci.2003.08.002

Google Scholar

[9] A. Okada, A. Usuki, Twenty years of polymer-clay nanocomposites, Macromol. Mater. Eng. 291 (2006) 1449-1476.

DOI: 10.1002/mame.200600260

Google Scholar

[10] M. Zanetti, L.S. Lomakin, G. Camino, Polymer layered silicate nanocomposits, Macromol. Mater. Eng. 279 (2000) 1-9.

DOI: 10.1002/1439-2054(20000601)279:1<1::aid-mame1>3.0.co;2-q

Google Scholar

[11] Y.Z. Cai, Z.H. Guo, Z.P. Fang, Z.H. Cao, Effects of layered lanthanum phenylphosphonate on flame retardancy of glass-fiber reinforced poly(ethylene terephthalate) nanocomposites, Appl. Clay. Sci. 77-78 (2013) 10-17.

DOI: 10.1016/j.clay.2013.03.015

Google Scholar

[12] J. Alongi, A. Frache, Flame retardancy properties of α-zirconium phosphate based composites, Polym. Degrad. Stab. 95 (2010) 1928-1933.

DOI: 10.1016/j.polymdegradstab.2010.04.007

Google Scholar

[13] D.Y. Wang, X.Q. Liu, J.S. Wang, Y.Z. Wang, A.A. Stec, T.R. Hull, Preparation and characterisation of a novel fire retardant PET/α-zirconium phosphate composite, Polym. Degrad. Stab. 94 (2009) 544-549.

DOI: 10.1016/j.polymdegradstab.2009.01.018

Google Scholar

[14] L.S. Brandao, L.C. Mendes, M. E. Medeiros, L. Sirelli, M.L. Dias, Thermal and mechanical properties of poly(ethylene terephthalate)lamellar zirconium phosphate nanocomposites, J. Appl. Polym. Sci. 102 (2006) 3868-3876.

DOI: 10.1002/app.24096

Google Scholar

[15] Y.J. Yang, C.H. Liu, P.R. Chang, Y. Chen, D.P. Anderson, M. Stumborg, Properities and structural characterization of oxidized starch/PVA/α-zirconium phosphate composites, J. Appl. Polym. Sci. 10 (2009) 1089-1097.

DOI: 10.1002/app.31099

Google Scholar

[16] H.X. Wu, C.H. Liu, Y.J. Yang, J.G. Chen, P.R. Chang, Y. Chen, Starch-based nanocomposites reinforced with layered zirconium phosphonate, Polym. Compos. 10 (2010) 1938-1946.

DOI: 10.1002/pc.20992

Google Scholar

[17] H.D. Lu, C.A. Wilkie, The influence of α-zirconium phosphate on fire performance of EVA and PS composites, Polym. Adv. Technol. 22 (2011) 1123-1130.

DOI: 10.1002/pat.1923

Google Scholar

[18] X.Q. Liu, D.Y. Wang, X.L. Wang, L. Chen, Y.Z. Wang, Synthesis of organo-modified α-zirconium phosphate and its effecton the flame retardancy of IFR poly(lactic acid) systems, Polym. Degrad. Stab. 96 (2011) 771-777.

DOI: 10.1016/j.polymdegradstab.2011.02.022

Google Scholar

[19] Q.L. Tai, Y.C. Kan, L.J. Chen W.Y. Xing, Y. Hu, L. Song. Morphologies and thermal properties of flame-retardant polystyrene/α-zirconium phosphate nanocomposites, React. Funct. Polym. 70 (2010) 340-345.

DOI: 10.1016/j.reactfunctpolym.2010.02.008

Google Scholar