Microstructure, Mechanical and Tribological Properties of the Tialn Coatings after Nb and C Dual Ion Implantation

Article Preview

Abstract:

Ion implantation is an effective method to enhance hardness and wear resistance of the TiAlN coatings. In this paper, Nb and C ions are co-implanted into TiAlN coatings deposited by Magnetic Filter Arc Ion Plating (MFAIP), using a Metal Vacuum Vapor Arc (MEVVA) ion source implantor with doses of 1×1017 and 5×1017 ions/cm2. The microstructure, chemical composition, mechanical and tribological properties of Nb+C-implanted TiAlN coatings have been investigated by glancing incidence X-ray diffraction, X-ray photoelectron spectroscopy, nanoindentation test and SRV friction & wear tester, respectively. The results showed that the NbN and TiC phases could be detected both from the XRD and XPS profiles of as-prepared films. Nb and C ion implantation could improve the hardness, plastic deformation resistance and wear behavior of TiAlN coatings due to the energetic Nb and C ion bombardment and the formation of NbN and TiC phases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

455-460

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Guo-an Cheng, Dong-yan Han, Chang-lin Liang, Xiao-ling Wu, Rui-ting Zheng, Influence of residual stress on mechanical properties of TiAlN thin films, Surf. Coat. Technol. 228 (2013) S328-S330.

DOI: 10.1016/j.surfcoat.2012.05.108

Google Scholar

[2] K. Singh, P.K. Limaye, N.L. Soni, A.K. Grover, R.G. Agrawal, A.K. Suri, Wear studies of (Ti–Al)N coatings deposited by reactive magnetron sputtering, Wear. 258 (2005) 1813-1824.

DOI: 10.1016/j.wear.2004.12.023

Google Scholar

[3] V.A. Belous, V.V. Vasyliev, V.S. Goltvyanytsya, S.K. Goltvyanytsya, A.A. Luchaninov, E.N. Reshetnyak, V.E. Strelnitskij, G.N. Tolmacheva, O. Danylina, Structure and properties of Ti–Al–Y–N coatings deposited from filtered vacuum-arc plasma, Surf. Coat. Technol. 206 (2011) 1720-1726.

DOI: 10.1016/j.surfcoat.2011.09.061

Google Scholar

[4] L.J. Liu, D.K. Sood, R.R. Manory, W. Zhou, Modification of tribomechanical properties of commercial TiN coatings by carbon ion implantation, Surf. Coat. Technol. 71(1995) 159-166.

DOI: 10.1016/0257-8972(94)01015-b

Google Scholar

[5] R.R. Manory, C.L. Li, C. Fountzoulas, J.D. Demaree, J.K. Hirvonen, R. Nowak, Effect of nitrogen ion-implantation on the tribological properties and hardness of TiN films, Mater. Sci. Eng. A. 253 (1998) 319-327.

DOI: 10.1016/s0921-5093(98)00743-6

Google Scholar

[6] J. Narojczyk, Z. Werner, D. Morozow, W. Tuszynski, Wear resistance of TiN coatings implanted with Al and N ions, Vacuum. 81 (2007) 1275-1277.

DOI: 10.1016/j.vacuum.2007.01.022

Google Scholar

[7] Ko-Wei Weng, Tai-Nan Lin, Da-Yung Wang, Tribological property enhancement of CrN films by metal vapor vacuum arc implantation of Vanadium and Carbon ions, Thin Solid Films. 516 (2008) 1012-1019.

DOI: 10.1016/j.tsf.2007.06.162

Google Scholar

[8] Bin Deng, Ye Tao, Hongliang Liu, Peiying Liu, Influence of niobium ion implantation on the microstructure and tribological properties of TiAlN coatings, Surf. Coat. Technol. 228 (2013), S554-S557.

DOI: 10.1016/j.surfcoat.2012.04.022

Google Scholar

[9] Yao-Can Zhu, K. Fujita, N. Iwamoto, H. Nagasaka, T. Kataoka, Influence of boron ion implantation on the wear resistance of TiAlN coatings, Surf. Coat. Technol. 158 -159 (2002) 664-668.

DOI: 10.1016/s0257-8972(02)00238-4

Google Scholar

[10] J.F. Ziegler, J.P. Biersack, U. Littmark, Stopping Powers and Range of Ions in Mater, Pergamon Press, New York, 1985.

Google Scholar

[11] Y.F. Xu, P.W. Shum, Z.F. Zhou, K.Y. Li, Effect of high-energy carbon ion implantation on Ti–Al–Si–N coatings by metal vapour vacuum arc, Surf. Coat. Technol. 204(2010) 1914-1918.

DOI: 10.1016/j.surfcoat.2009.09.006

Google Scholar

[12] S. Badrinarayanan, S. Sinha, X-ray photoelectron spectroscopy studies of the reaction of N+ 2 -ion beams with niobium and tantalum metals, J. Appl. Phys. 69(1991) 1141-1146.

DOI: 10.1063/1.347294

Google Scholar

[13] B.M. Biwer, S.L. Bernasek, Electron spectroscopic study of the iron surface and its interaction with oxygen and nitrogen, J. Electron. Spectrosc. Relat. Phemon. 40(1986) 339-351.

DOI: 10.1016/0368-2048(86)80044-5

Google Scholar

[14] B. Koscielska, A. Winiarski, B. Kusz, Structure and electrical properties of nitrided NbN-TiN sol-gel derived films, J. Non-Cryst. Solids. 355 (2009) 1342-1346.

DOI: 10.1016/j.jnoncrysol.2009.05.023

Google Scholar

[15] G. Jouve, C. Severac, S. Cantacuzene, XPS study of NbN and (NbTi)N superconducting coatings, Thin Solid Films. 287 (1996) 146-153.

DOI: 10.1016/s0040-6090(96)08776-7

Google Scholar

[16] J.C. Caicedo, G. Zambrano, W. Aperador, L. Escobar-Alarcon, E. Camps, Mechanical and electrochemical characterization of vanadium nitride (VN) thin films, Appl. Surf. Sci. 258 (2011) 312-320.

DOI: 10.1016/j.apsusc.2011.08.057

Google Scholar

[17] G.S. Kim, S.Y. Lee, J.H. Hahn, Synthesis of CrN/AlN superlattice coatings using closed-field unbalanced magnetron sputtering process, Surf. Coat. Technol. 171 (2003) 91-95.

DOI: 10.1016/s0257-8972(03)00244-5

Google Scholar

[18] G.W. Stachowiak, A.W. Batchelor, Engineering Tribology, third ed., Elsevier, Butterworth-Heinemann, Amsterdam, Netherlands, 2005, 461-499.

Google Scholar