Progress in Novel Composite Thermal Barrier Coating

Article Preview

Abstract:

Improved structure design has been acknowledged as an effective approach to obtain thermal barrier coating (TBC) with excellent resistance to high-temperature oxidation and spallation. Since ceramic composites can effectively enhance the strength and durability of ceramic components and improve their fracture toughness, it is reasonable to propose that composite structure of TBC should possess improved mechanical properties than its traditional structure with single phase in bond coat and top coat. In this paper, the progress in novel composite TBC developed by the authors’ research group has been summarized, including TBCs with bond coat of ceramic/ceramic and ceramic/noble metal composite coatings which replace the traditional alloy bond coat, and also TBCs with novel composite structure have been studied. It has been investigated that these TBCs exhibit not only excellent high-temperature oxidation resistance, but also excellent resistance to cracking, spallation and buckling under thermal cycling. Such beneficial effects can be attributed to the sealing mechanism of these coatings on oxygen diffusion, the improvement of thermal expansion mismatch and the toughening effects of these composite structures. It would be a growing trend in introducing various composite modes into the traditional thermal barrier coating or developing new composite structure of thermal barrier coating.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

471-476

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Pan, M.W. Chen, P.K. Wright, K.J. Hemker, Evolution of a diffusion aluminide bond coat for thermal barrier coatings during thermal cycling , Acta Mater. 51 (2003) 2205-2217.

DOI: 10.1016/s1359-6454(03)00014-4

Google Scholar

[2] W.J. Quadakkers, V. Shemet, D. Sebold, R. Anton, E. Wessel, L. Singheiser, Oxidation characteristics of a platinized MCrAlY bond coat for TBC systems during cyclic oxidation at 1000 °C, Surf. Coat. Technol. 199 (2005) 77-82.

DOI: 10.1016/j.surfcoat.2004.11.038

Google Scholar

[3] F.H. Yuan, Z.X. Chen, Z.W. Huang, Z.G. Wang, S.J. Zhu, Oxidation behavior of thermal barrier coatings with HVOF and detonation-sprayed NiCrAlY bondcoats, Corros. Sci. 50 (2008) 1608-1617.

DOI: 10.1016/j.corsci.2008.02.002

Google Scholar

[4] J.H. Park, J.S. Kim, K.H. Lee, Y.S. Song, M.C. Kang, Effects of the laser treatment and thermal oxidation behavior of CoNiCrAlY/ZrO2–8 wt%Y2O3 thermal barrier coating, J. Mater. Process. Technol. 201 (2008) 331-335.

DOI: 10.1016/j.jmatprotec.2007.11.192

Google Scholar

[5] W.J. Clegg, K. Kendall, N. McN. Alford, T.W. Button, J.D. Birchall, A simple way to make tough ceramics, Nature, 347 (1990) 455-457.

DOI: 10.1038/347455a0

Google Scholar

[6] J. Yao, L. Lv, Y. He, D. Wang, Size effect of (Al2O3-Y2O3)/YSZ micro-laminated coating on high-temperature oxidation resistance, Appl. Surf. Sci. 279 (2013) 85-91.

DOI: 10.1016/j.apsusc.2013.04.039

Google Scholar

[7] J. Yao, Y. He, D. Wang, Influence of Al2O3/YSZ micro-laminated coatings on high temperature oxidation and spallation resistance of MCrAlY alloys, J. Phys.: Conf. Ser. 419 (2013) 012019.

DOI: 10.1088/1742-6596/419/1/012019

Google Scholar

[8] J. Yao, Y. He, D. Wang, J. Lin, High-temperature oxidation resistance of (Al2O3-Y2O3)/(Y2O3-stabilized ZrO2) laminated coating on 8Nb-TiAl alloy prepared by a novel spray pyrolysis, Corros. Sci. (2013), doi: http://dx.doi.org/10.1016/j.corsci.2013.08.029, in press.

DOI: 10.1016/j.corsci.2013.08.029

Google Scholar

[9] S. Widjaja, A.M. Limarga, T.H. Yip, Oxidation behavior of a plasma-sprayed functionally graded ZrO2/Al2O3 thermal barrier coating, Mater. Lett. 57 (2002) 628-634.

DOI: 10.1016/s0167-577x(02)00842-x

Google Scholar

[10] S.P. Timoshenko, Analysis of bi-metal thermostats, J. Opt. Soc. Am. 11 (1925) 233-255.

Google Scholar

[11] U.R. Evans, An introduction to metallic corrosion, Edward Arnold, London, 1948.

Google Scholar

[12] Y. He, W. Gao, Theoretical consideration on composite oxide scales and coatings, J. Rare Earths 31 (2013) 435-440.

DOI: 10.1016/s1002-0721(12)60300-7

Google Scholar

[13] J. Gao, Y. He, D. Wang, Fabrication and high temperature oxidation resistance of ZrO2/Al2O3 micro-laminated coatings on stainless steel, Mater. Chem. Phys. 123 (2010) 731-736.

DOI: 10.1016/j.matchemphys.2010.05.047

Google Scholar

[14] J. Gao, Y. He, D. Wang, Preparation of YSZ/Al2O3 micro-laminated coatings and their influence on the oxidation and spallation resistance of MCrAlY alloys, J. Eur. Ceram. Soc. 31 (2011) 79-84.

DOI: 10.1016/j.jeurceramsoc.2010.08.010

Google Scholar

[15] J. Yao, Y. He, D. Wang, H. Peng, H. Guo, S. Gong, Thermal barrier coating bonded by (Al2O3-Y2O3)/(Y2O3-stabilized ZrO2) laminated composite coating prepared by two-step cyclic spray pyrolysis, Corros. Sci. (2013), doi: http://dx.doi.org/10.1016/j.corsci.2013.10.006, in press.

DOI: 10.1016/j.corsci.2013.10.006

Google Scholar

[16] J. Gao, Y. He, W. Gao, Oxidation behavior of γ-TiAl based alloy with Al2O3-Y2O3 composite coatings prepared by electrophoretic deposition, Surf. Coat. Technol. 205 (2011) 4453-4458.

DOI: 10.1016/j.surfcoat.2011.03.068

Google Scholar

[17] J. Gao, Y. He, W. Gao, Electro-codeposition of Al2O3-Y2O3 composite thin film coatings and their high-temperature oxidation resistance on γ-TiAl alloy, Thin Solid Films, 520 (2012) 2060-2065.

DOI: 10.1016/j.tsf.2011.11.004

Google Scholar

[18] C. Ren, Y. He, D. Wang, High-temperature cyclic oxidation behavior of Al2O3-YAG composite coating prepared by EPD and microwave sintering, Appl. Surf. Sci. 258 (2012) 5739-5745.

DOI: 10.1016/j.apsusc.2012.02.081

Google Scholar

[19] C. Ren, Y. He, D. Wang, Cyclic oxidation behavior and thermal barrier effect of YSZ-(Al2O3/YAG) double-layer TBCs prepared by the composite sol-gel method, Surf. Coat. Technol. 206 (2011) 1461-1468.

DOI: 10.1016/j.surfcoat.2011.09.025

Google Scholar

[20] C. Ren, Y. He, D. Wang, Al2O3/YSZ composite coatings prepared by a novel sol-gel process and their high-temperature oxidation resistance, Oxid. Met. 74 (2010) 275-285.

DOI: 10.1007/s11085-010-9210-x

Google Scholar

[21] C. Ren, Y. He, D, Fabrication and characteristics of YSZ-YSZ/Al2O3 double-layer TBC, Oxid. Met. 75 (2011) 325-335.

DOI: 10.1007/s11085-011-9236-8

Google Scholar

[22] X. Ma, Y. He, D. Wang, J. Zhang, Enhanced high-temperature corrosion resistance of (Al2O3-Y2O3)/Pt micro-laminated coatings on 316L stainless steel alloy, Corros. Sci. 54 (2012) 183-192.

DOI: 10.1016/j.corsci.2011.09.014

Google Scholar

[23] X. Ma, Y. He, D. Wang, J. Zhang, Superior high-temperature oxidation resistance of a novel (Al2O3-Y2O3)/Pt laminated coating, Appl. Surf. Sci. 258 (2012) 4733-4740.

DOI: 10.1016/j.apsusc.2012.01.069

Google Scholar

[24] X. Ma, Y. He, J. Lin, D. Wang, J. Zhang, Effect of a magnetron sputtered (Al2O3-Y2O3)/(Pt-Au) laminated coating on hot corrosion resistance of 8Nb-TiAl alloy, Surf. Coat. Technol. 206 (2012) 2690-2697.

DOI: 10.1016/j.surfcoat.2011.11.028

Google Scholar

[25] J. Gao, F. Lu, Z. Tang, C. Wang, Y. He, Preparation of Al2O3/Au nano-laminated composite coatings and their oxidation resistance on stainless steel, Trans. Nonferrous Met. Soc. China 22 (2012) 2491-2497.

DOI: 10.1016/s1003-6326(11)61490-8

Google Scholar

[26] X. Ma, Y. He, D. Wang, Preparation and high-temperature properties of Au nano-particles doped α-Al2O3 composite coating on TiAl-based alloy, Appl. Surf. Sci. 257 (2011) 10273-10281.

DOI: 10.1016/j.apsusc.2011.07.041

Google Scholar

[27] J. Yao, Y. He, D. Wang, H. Peng, H. Guo, S. Gong, Thermal barrier coatings with (Al2O3-Y2O3)/(Pt or Pt-Au) composite bond coat and 8YSZ top coat on Ni-based superalloy, Appl. Surf. Sci. 286 (2013) 298-305.

DOI: 10.1016/j.apsusc.2013.09.075

Google Scholar

[28] C. Ren, Y. He, D. Wang, Preparation and characteristics of three-layer YSZ-(YSZ/Al2O3)-YSZ TBCs, Appl. Surf. Sci. 257 (2011) 6837-6842.

DOI: 10.1016/j.apsusc.2011.03.010

Google Scholar