Molecular Dynamics Simulation of Porous Layer-Induced Stress in α-Iron Single Crystal and Twin Crystal

Article Preview

Abstract:

Molecular dynamics (MD) simulation was carried out to investigate the stress distribution and the macro tensile stress for the α-iron single crystal and twin crystal. The results show that there was a maximum tensile stress located at the matrix near the interface between the porous layer and the matrix for the two crystals. It has been found that a steep drop of stress generated at the twin boundary of the twin crystal. The deflection and the macro tensile stress of the single crystal and the twin crystal increased with an increase of the relative depth of the porous layer. The value of the deflection and the macro tensile stress of the single crystal were larger than that for the twin crystal, because there is a steep drop of stress generated at the twin boundary due to the effect of twin interface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

536-542

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Leis, R.N. Parkins, Mechanics and material aspects in predicting serviceability limited by stress-corrosion cracking, Fatigue Fract. Eng. Mater. Struct. 21 (1998), 583-601.

DOI: 10.1046/j.1460-2695.1998.00049.x

Google Scholar

[2] B.W. Pan, X. Peng, W.Y. Chu, Y.J. Su , L.J. Qiao, Stress corrosion cracking of API X-60 pipeline in a soil containing water, Mater. Sci. Eng. A. Vol. 434 (2006), 76-81.

DOI: 10.1016/j.msea.2006.06.087

Google Scholar

[3] B. Gu, W.Y. Chu, L.J. Qiao, C.M. Hsiao, The effect of anodic polarization on the ambient creep of brass, Corr. Sci. 36 (1994), 1437-1445.

DOI: 10.1016/0010-938x(94)90191-0

Google Scholar

[4] K.W. Gao, Y.B. Wang, W.Y. Chu, C.M. Hsiao, In-situ TEM observation of dissolution-enhanced dislocation emission, motion and the nucleation of SCC for Ti 24Al11Nb alloy in methanol, Scr. Metall. 36 (1997), 259-264.

DOI: 10.1016/s1359-6462(96)00368-5

Google Scholar

[5] H. Lu, K.W. Gao, W.Y. Chu, Determination of tensile stress induced by dezincification layer during corrosion for brass, Corr. Sci. 40 (1998), 1663-1670.

DOI: 10.1016/s0010-938x(98)00063-8

Google Scholar

[6] X.J. Guo, K.W. Gao, L.J. Qiao etc, The correspondence between susceptibility to SCC of brass and corrosion-induced tensile stress with various pH values, Corr. Sci. 44 (2002), 2367-2378.

DOI: 10.1016/s0010-938x(02)00055-0

Google Scholar

[7] X.Z. Guo, K.W. Gao, W.Y. Chu, L.J. Qiao, Correlation between passive film-induced stress and stress corrosion cracking of α-Ti in a methanol solution at various potentials, Mater. Sci. Eng A. 346 (2003), 1-7.

DOI: 10.1016/s0921-5093(02)00529-4

Google Scholar

[8] J.X. Li, W.Y. Chu, Y.B. Wang, L.J. Qiao, In situ TEM study of stress corrosion cracking of austenitic stainless steel, Corr. Sci. 45 (2003), 1355-1365.

DOI: 10.1016/s0010-938x(02)00225-1

Google Scholar

[9] K. Mon, M. Ferrari, On corrosion-induced stress states in binary noble metal alloys, Mater. Sci. Eng. A. 232 (1997), 88-102.

DOI: 10.1016/s0921-5093(97)00098-1

Google Scholar

[10] Q.K. Li, Y. Zhang, W.Y. Chu, Molecular dynamics simulation of stress corrosion cracking in Cu3Au, Comput. Mater. Sci. 25 (2002), 510-518.

DOI: 10.1016/s0927-0256(02)00328-2

Google Scholar

[11] Q.K. Li, Y. Zhang, S.Q. Shi, W.Y. Chu, Molecular dynamics simulation of dealloyed layer-enhanced dislocation emission and crack propagation, Mater. Lett. 56 (2002), 927-932.

DOI: 10.1016/s0167-577x(02)00639-0

Google Scholar

[12] D. Li, F.Y. Meng, X.Q. Ma, L.J. Qiao, W.Y. Chu, Molecular dynamics simulation of porous layer-induced stress in Fe single crystal, Comput. Mater. Sci. 49 (2010), 641-644.

DOI: 10.1016/j.commatsci.2010.06.006

Google Scholar

[13] T. Smida, J. Basansky, Micromechanism of cleavage fracture in ferritic steels, Kovove Mater. 40 (2002), 146-160.

Google Scholar

[14] Y.F. Guo, Y.S. Wang, D.L. Zhao, Atomistic simulation of stress-induced phase transformation and recrystallization at the crack tip in bcc iron, Acta. Mater. 55 (2007), 401-407.

DOI: 10.1016/j.actamat.2006.08.022

Google Scholar

[15] J.M. Berry, Cleavage step formation in brittle fracture, Trans. Am. Soc. Metals. 51 (1959), 556-588.

Google Scholar

[16] F. Sorbello, P.E.J. Flewitt, G. Smith, A.G. Crocker, The role of deformation twins in brittle crack propagation in iron–silicon steel, Acta. Mater. 57 (2009), 2646-2656.

DOI: 10.1016/j.actamat.2009.02.011

Google Scholar

[17] H. Vogt, M.O. Speidel, Stress corrosion cracking of two aluminium alloys: A comparison between experimental observations and data based on modelling, Corr. Sci. 40 (1998), 251-270.

DOI: 10.1016/s0010-938x(97)00132-7

Google Scholar

[18] M. Ahmad, Effects of environment and microstructure on stress corrosion crack propagation in an Al Li Cu Mg alloy, Mater. Sci. Eng. A. 125 (1990), 1-14.

DOI: 10.1016/0921-5093(90)90246-y

Google Scholar

[19] T.D. Burleigh, The Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys, Corrosion. 47 (1991), 89-98.

DOI: 10.5006/1.3585235

Google Scholar

[20] N.J.H. Holroyd, Environment-induced cracking of high strength aluminium alloys, EICM Proceedings, (1990), 311-345.

Google Scholar

[21] M.S. Daw, M.I. Baskes, Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals, Phys. Rev. Lett. 50 (1983), 1285-1288.

DOI: 10.1103/physrevlett.50.1285

Google Scholar

[22] M.S. Daw, M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B. 29 (1984), 6443-6453.

DOI: 10.1103/physrevb.29.6443

Google Scholar

[23] V. Shastry, D.Farkas, Molecular Statics Simulation Of Crack Propagation In A-Fe Using Eam Potentials, Mater. Res. Soc. Symp. Proc. 409 (1996), 75-80.

DOI: 10.1557/proc-409-75

Google Scholar

[24] W.B. Yu, A. Madhukar, Molecular Dynamics Study of Coherent Island Energetics, Stresses, and Strains in Highly Strained Epitaxy, Phys. Rev. Lett. 79(1997), 905-908.

DOI: 10.1103/physrevlett.79.905

Google Scholar

[25] H.J.C. Berendsen, J.P.M. Postma, W.F. Van. Gunsteren, A.Dinola, J.R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81 (1984), 3684-3690.

DOI: 10.1063/1.448118

Google Scholar

[26] S. Toxvaerd, A new algorithm for molecular dynamics calculations, J. Comput. Phys. 47 (1982), 444-451.

Google Scholar