[1]
B. Leis, R.N. Parkins, Mechanics and material aspects in predicting serviceability limited by stress-corrosion cracking, Fatigue Fract. Eng. Mater. Struct. 21 (1998), 583-601.
DOI: 10.1046/j.1460-2695.1998.00049.x
Google Scholar
[2]
B.W. Pan, X. Peng, W.Y. Chu, Y.J. Su , L.J. Qiao, Stress corrosion cracking of API X-60 pipeline in a soil containing water, Mater. Sci. Eng. A. Vol. 434 (2006), 76-81.
DOI: 10.1016/j.msea.2006.06.087
Google Scholar
[3]
B. Gu, W.Y. Chu, L.J. Qiao, C.M. Hsiao, The effect of anodic polarization on the ambient creep of brass, Corr. Sci. 36 (1994), 1437-1445.
DOI: 10.1016/0010-938x(94)90191-0
Google Scholar
[4]
K.W. Gao, Y.B. Wang, W.Y. Chu, C.M. Hsiao, In-situ TEM observation of dissolution-enhanced dislocation emission, motion and the nucleation of SCC for Ti 24Al11Nb alloy in methanol, Scr. Metall. 36 (1997), 259-264.
DOI: 10.1016/s1359-6462(96)00368-5
Google Scholar
[5]
H. Lu, K.W. Gao, W.Y. Chu, Determination of tensile stress induced by dezincification layer during corrosion for brass, Corr. Sci. 40 (1998), 1663-1670.
DOI: 10.1016/s0010-938x(98)00063-8
Google Scholar
[6]
X.J. Guo, K.W. Gao, L.J. Qiao etc, The correspondence between susceptibility to SCC of brass and corrosion-induced tensile stress with various pH values, Corr. Sci. 44 (2002), 2367-2378.
DOI: 10.1016/s0010-938x(02)00055-0
Google Scholar
[7]
X.Z. Guo, K.W. Gao, W.Y. Chu, L.J. Qiao, Correlation between passive film-induced stress and stress corrosion cracking of α-Ti in a methanol solution at various potentials, Mater. Sci. Eng A. 346 (2003), 1-7.
DOI: 10.1016/s0921-5093(02)00529-4
Google Scholar
[8]
J.X. Li, W.Y. Chu, Y.B. Wang, L.J. Qiao, In situ TEM study of stress corrosion cracking of austenitic stainless steel, Corr. Sci. 45 (2003), 1355-1365.
DOI: 10.1016/s0010-938x(02)00225-1
Google Scholar
[9]
K. Mon, M. Ferrari, On corrosion-induced stress states in binary noble metal alloys, Mater. Sci. Eng. A. 232 (1997), 88-102.
DOI: 10.1016/s0921-5093(97)00098-1
Google Scholar
[10]
Q.K. Li, Y. Zhang, W.Y. Chu, Molecular dynamics simulation of stress corrosion cracking in Cu3Au, Comput. Mater. Sci. 25 (2002), 510-518.
DOI: 10.1016/s0927-0256(02)00328-2
Google Scholar
[11]
Q.K. Li, Y. Zhang, S.Q. Shi, W.Y. Chu, Molecular dynamics simulation of dealloyed layer-enhanced dislocation emission and crack propagation, Mater. Lett. 56 (2002), 927-932.
DOI: 10.1016/s0167-577x(02)00639-0
Google Scholar
[12]
D. Li, F.Y. Meng, X.Q. Ma, L.J. Qiao, W.Y. Chu, Molecular dynamics simulation of porous layer-induced stress in Fe single crystal, Comput. Mater. Sci. 49 (2010), 641-644.
DOI: 10.1016/j.commatsci.2010.06.006
Google Scholar
[13]
T. Smida, J. Basansky, Micromechanism of cleavage fracture in ferritic steels, Kovove Mater. 40 (2002), 146-160.
Google Scholar
[14]
Y.F. Guo, Y.S. Wang, D.L. Zhao, Atomistic simulation of stress-induced phase transformation and recrystallization at the crack tip in bcc iron, Acta. Mater. 55 (2007), 401-407.
DOI: 10.1016/j.actamat.2006.08.022
Google Scholar
[15]
J.M. Berry, Cleavage step formation in brittle fracture, Trans. Am. Soc. Metals. 51 (1959), 556-588.
Google Scholar
[16]
F. Sorbello, P.E.J. Flewitt, G. Smith, A.G. Crocker, The role of deformation twins in brittle crack propagation in iron–silicon steel, Acta. Mater. 57 (2009), 2646-2656.
DOI: 10.1016/j.actamat.2009.02.011
Google Scholar
[17]
H. Vogt, M.O. Speidel, Stress corrosion cracking of two aluminium alloys: A comparison between experimental observations and data based on modelling, Corr. Sci. 40 (1998), 251-270.
DOI: 10.1016/s0010-938x(97)00132-7
Google Scholar
[18]
M. Ahmad, Effects of environment and microstructure on stress corrosion crack propagation in an Al Li Cu Mg alloy, Mater. Sci. Eng. A. 125 (1990), 1-14.
DOI: 10.1016/0921-5093(90)90246-y
Google Scholar
[19]
T.D. Burleigh, The Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys, Corrosion. 47 (1991), 89-98.
DOI: 10.5006/1.3585235
Google Scholar
[20]
N.J.H. Holroyd, Environment-induced cracking of high strength aluminium alloys, EICM Proceedings, (1990), 311-345.
Google Scholar
[21]
M.S. Daw, M.I. Baskes, Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals, Phys. Rev. Lett. 50 (1983), 1285-1288.
DOI: 10.1103/physrevlett.50.1285
Google Scholar
[22]
M.S. Daw, M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B. 29 (1984), 6443-6453.
DOI: 10.1103/physrevb.29.6443
Google Scholar
[23]
V. Shastry, D.Farkas, Molecular Statics Simulation Of Crack Propagation In A-Fe Using Eam Potentials, Mater. Res. Soc. Symp. Proc. 409 (1996), 75-80.
DOI: 10.1557/proc-409-75
Google Scholar
[24]
W.B. Yu, A. Madhukar, Molecular Dynamics Study of Coherent Island Energetics, Stresses, and Strains in Highly Strained Epitaxy, Phys. Rev. Lett. 79(1997), 905-908.
DOI: 10.1103/physrevlett.79.905
Google Scholar
[25]
H.J.C. Berendsen, J.P.M. Postma, W.F. Van. Gunsteren, A.Dinola, J.R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81 (1984), 3684-3690.
DOI: 10.1063/1.448118
Google Scholar
[26]
S. Toxvaerd, A new algorithm for molecular dynamics calculations, J. Comput. Phys. 47 (1982), 444-451.
Google Scholar