Helium Diffusion in Tungsten Studied by Molecular Dynamics Method

Article Preview

Abstract:

The interstitial helium (He) atom diffusion in tungsten (W) was studied by the Molecular Dynamics Simulation with the drag method, the Nudged Elastic Band method (NEB) and the mean square displacement (MSD) method. The diffusion barriers and the possible microscopic diffusion path were calculated by the drag method. It has the characteristics of simple, intuitive, and occupies less computer resources, but can't get the diffusion equation. The NEB method is more reasonable than the drag method to calculate the diffusion barriers, and determine the diffusion path which, but the former spends more computer resources than the latter, and it also can't get the diffusion equation. The diffusion equation is obtained by MSD method, including the diffusion per-factor and diffusion barriers. It is suggested that the mechanism of He diffusion changes with difference temperature, which spends the most computer resources among the three methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

543-548

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Nishijima, M.Y.Ye, N. Ohno, S. Takamura, J. Nucl. Mater., 329-333 (2004) 1029.

Google Scholar

[2] S. Kajita, S. Takamura, N. Ohno, D. Nishijima, H. Iwakiri, N. Yoshida, Nucl. Fusion 47 (2007) 1358.

DOI: 10.1088/0029-5515/47/9/038

Google Scholar

[3] W.-Y Li, Y. Zhang, H.-B. Zhou, S. Jin, G.-H. Lu, Nucl. Instr. Meth. in Phys. Res. B, 269 (2011) 1731.

Google Scholar

[4] H.-B. Zhou, Y.-L. Liu, S. Jin, Y. Zhang, G.-H. Lu, G.-N. Luo, Nucl. Fusion 50 (2010) 025016.

Google Scholar

[5] Y.-L. Liu, Y. Zhang, H.-B. Zhou, G.-H. Lu, F. Liu, and G.-N. Lou, Physical Review B 79, (2009) 172103

Google Scholar

[6] X.-C. Li, F. Gao and G.-H. Lu, Nucl. Instr. Meth. in Phys. Res. B, 267 (2009) 3199

Google Scholar

[7] Y.-L. Liu, H.-B. Zhou, Y. Zhang, S. Jin, G.-H. Lu, Nucl. Instr. Meth. in Phys. Res. B, 267 (2009) 3193

Google Scholar

[8] D. Nishijima, H. Iwakiri, K. Amano, M.Y. Ye, N. Ohno, K. Tokunaga, et al., Nucl. Fusion 45 (2005) 669.

Google Scholar

[9] H.-B. Zhou, Y.-L. Liu, S. Jin, Y. Zhang, G. –N. Luo and G.-H. Lu, Nucl. Fusion 50 (2010) 115010.

Google Scholar

[10] Q. Xu, N. Yoshida, T. Yoshiie , J. Nucl. Mater., 367-370 (2007) 806.

Google Scholar

[11] T. Ono, T. Kawamura, T. Kenmotsu, Y. Yamamura, J. Nucl. Mater., 290-293 (2001) 140.

Google Scholar

[12] S. Becquart, C. Domain, U. Sarkar, A. DeBacker, M. Hou, J. Nucl. Mater., 403 (2010) 75.

Google Scholar

[13] G. Henkelman, B. P. Uberuaga, H. Jonsson, J. Chem. Phys. 113 (2000) 9901; J. Chem. Phys. 113 (2000) 9978.

Google Scholar

[14] X.-C. Li, X.-L. Shu, Y.-N. Liu, Y. Yu, F. Gao, G.-H. Lu, J. Nucl. Mater., 426 (2012) 31.

Google Scholar

[15] Xiaolin Shu, Peng Tao , Xiaochun Li, Yi Yu, et. al. Nucl. Instr. Meth. in Phys. Res. B, 313 (2013)

Google Scholar

[16] J. Amino, D. N. Seidman, J. Appl. Phys. 56 (1984)983.

Google Scholar

[17] C. S. Becquart, C. Domain, Phys. Rev. Lett. 97 (2006) 196402.

Google Scholar