Modelling of the Density Changes of Nodular Cast Iron During Solidification by CA-FD Method

Article Preview

Abstract:

Formation of the shrinkage defects in ductile iron castings is far more complicated phenomenon than in other casting alloys. In the presented paper changes the ductile iron density during solidification is analyzed. During the solidification path the influence of the temperature, phase fractions and phase composition is taking into account. Computer model, using cellular automata method, for estimation of changes in density of ductile iron during its solidification is applied. Results of the solidification modeling for Fe-C binary alloys with different composition in the castings with a different wall thickness are presented. As a result of calculations it was stated that after undercooling ductile iron below liquidus temperature volumetric changes proceed in three stages: pre-eutectic shrinkage (minimal in eutectic cast iron), eutectic expansion and the last shrinkage.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

140-145

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Fredriksson, J. Stjerndahl, J. Tinoco, On the solidification of nodular cast iron and its relation to the expansion and contraction, Mat. Sci. and Eng. A. 413-414 (2005) 363-372.

DOI: 10.1016/j.msea.2005.09.028

Google Scholar

[2] A. Burbelko, E. Fraś, D. Gurgul, W. Kapturkiewicz, J. Sikora, Simulation of the ductile iron solidification using a cellular automaton, Key Eng. Mat. 457 (2011) 330-336.

DOI: 10.4028/www.scientific.net/kem.457.330

Google Scholar

[3] G Nandori, Relation between the volume change during the solidification of lamellar and ductile cast iron and the crystallization sequence, Mat. Sci. Forum. 215-216 (1996), 399-407.

DOI: 10.4028/www.scientific.net/msf.215-216.399

Google Scholar

[4] Z. Gedeonova et al., Displacement of the Surface Mould and Metal during the Solidification of Nodular Graphite Iron Casting, Mat. Sci. Forum. 215-216 (1996) 391-398.

DOI: 10.4028/www.scientific.net/msf.215-216.391

Google Scholar

[5] I. Ohnaka, A. Sato, A. Sugiyama, F. Kinoshita, Mechanism and estimation of porosity defects in ductile cast iron, Int. J. of Cast Met. Res. Vol. 21, no 1-4, 2008, pp.11-16.

DOI: 10.1179/136404608x361585

Google Scholar

[6] The Sorelmetal Book of Ductile Iron. Rio Tinto Iron & Titanium, (2004).

Google Scholar

[7] A.R. Umantsev, V.V. Vinogradov, V.T. Borisov, Mathematical modeling of the dendrite growth during the solidification from undercooled melt, Kristallografia. 30 (1985) 455-460.

Google Scholar

[8] M. Rappaz, Ch.A. Gandin, Probabilistic Modelling of Microstructure Formation in Solidification Processes, Acta Met. et Materialia. 41 (1993) 345-360.

DOI: 10.1016/0956-7151(93)90065-z

Google Scholar

[9] S. Pan, M. Zhu, A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth, Acta Materialia. 58 (2010) 340-352.

DOI: 10.1016/j.actamat.2009.09.012

Google Scholar

[10] G. Guillemot, Ch.A. Gandin, M. Bellet, Interaction between single grain solidification and macrosegregation: Application of a cellular automaton-finite element model, J. of Cryst. Growth. 303 (2007) 58-68.

DOI: 10.1016/j.jcrysgro.2006.12.076

Google Scholar

[11] L. Beltran-Sanchez, D.M. Stefanescu, A quantitative dendrite growth model and analysis of stability concepts, Metall. Mat. Trans. A. 35 (2004) 2471-2485.

DOI: 10.1007/s11661-006-0227-3

Google Scholar

[12] V. Pavlyk, U. Dilthey, Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modelling, Model. Simul. Mat. Sci. Eng. 12 (2004) 33-45.

DOI: 10.1088/0965-0393/12/1/s03

Google Scholar

[13] M.F. Zhu, C.P. Hong, A three dimensional modified cellular automaton model for the prediction of solidification microstructures, ISIJ Int. 42 (2002) 520-526.

DOI: 10.2355/isijinternational.42.520

Google Scholar

[14] D.S. Svyetlichnyy, Reorganization of cellular space during the modeling of the microstructure evolution by frontal cellular automata, Comput. Mater. Sci. 60 (2012), 153-162.

DOI: 10.1016/j.commatsci.2012.03.029

Google Scholar

[15] A.A. Burbelko, E. Fraś, W. Kapturkiewicz, D. Gurgul, Modelling of dendritic growth during unidirectional solidification by the method of cellular automata, Mat. Sci. Forum. 649 (2010) 217222.

DOI: 10.4028/www.scientific.net/msf.649.217

Google Scholar

[16] D.J. Jarvis, S.G.R. Brown, J.A. Spittle, Modelling of non-equilibrium solidification in ternary alloys: comparison of 1D, 2D, and 3D cellular automaton-finite difference simulations, Mat. Sci. Techn. 16 (2000) 1420-1424.

DOI: 10.1179/026708300101507389

Google Scholar

[17] A.A. Burbelko, E. Fraś, W. Kapturkiewicz, E. Olejnik, Nonequilibrium kinetics of phase boundary movement in cellular automaton modelling, Mat. Sci. Forum. 508 (2006) 405-410.

DOI: 10.4028/www.scientific.net/msf.508.405

Google Scholar

[18] M. Zhu, S. Pan, D. Sun, H. Zhao, Numerical Simulation of Microstructure Evolution During Alloy Solidification by Using Cellular Automaton Method, ISIJ International. 50 (2010) 1851-1858.

DOI: 10.2355/isijinternational.50.1851

Google Scholar

[19] H.L. Zhao, M.F. Zhu, D.M. Stefanescu, Modeling of the divorced eutectic solidification of spheroidal graphite cast iron, Key Eng. Mat. 457 (2011) 324-329.

DOI: 10.4028/www.scientific.net/kem.457.324

Google Scholar

[20] W. Kapturkiewicz, A.A. Burbelko, E. Fraś, M. Górny, D. Gurgul, Computer modelling of ductile iron solidification using FDM and CA methods, J. Achiev. Mat. Manuf. Eng. 43 (2010) 310323.

DOI: 10.4028/www.scientific.net/kem.457.330

Google Scholar

[21] A.A. Burbelko, D. Gurgul, W. Kapturkiewicz, M. Górny, Cellular automaton modelling of ductile iron microstructure in the thin wall casting, Mat. Sci. Eng. 33 (2012) 012083. 1-9.

DOI: 10.1088/1757-899x/33/1/012083

Google Scholar

[22] D. Gurgul, A.A. Burbelko, E. Fraś, E. Guzik, Multiphysics and multiscale modelling of ductile cast iron solidification, Arch. Foundry Eng. 10 (2010) 35-40.

Google Scholar

[23] D. Gurgul, A. Burbelko, Simulation of Austenite and Graphite Growth in Ductile Iron by means of Cellular Automata, Arch. Met. Mater. 55 (2010) 53-60.

Google Scholar

[24] J. Hoyt and M. Asta, Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag, Phys. Rev. B. 65 (2002) 214106. 1-11.

DOI: 10.1103/physrevb.65.214106

Google Scholar

[25] A. Burbelko, Modeling of solidification process by cellular automata method, UWND AGH, Krakow, 2004 (in Polish).

Google Scholar

[26] H.L. Lukas, S.G. Fries, B. Sundman, Computational Thermodynamics: The Calphad Method, University Press, Cambridge, (2007).

DOI: 10.1017/cbo9780511804137

Google Scholar

[27] A.A. Burbelko, D. Gurgul, M. Królikowski, M. Wróbel, Cellular automaton modeling of ductile iron density changes at the solidification time. Submitted to Arch. Foundry Eng., (2013).

DOI: 10.2478/afe-2013-0074

Google Scholar