Investigation of Shielding Materials Impact on the Effectiveness of UAV FSO Communication Systems

Article Preview

Abstract:

The use of Free Space Optics (FSO) for Unmanned Aerial Vehicle (UAV) communication is a relatively new innovation that could become a necessity for all scenarios where real-time delivery of high daterates is essential. The present paper investigates one of the challenges being faced by this type of system, in particular the relationship between shielding materials of the protective dome and the wavelength of the emitted photons.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

311-315

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Valavanis: Advances in unmanned aerial vehicles: state of the art and the road to autonomy. Springer, (2007).

DOI: 10.1007/978-1-4020-6114-1

Google Scholar

[2] R. Austin: Unmanned Air Systems: UAV; design, development and deployment. Wiley, (2010).

Google Scholar

[3] H. Hemmati: Near-Earth Laser Communications. CRC Press, (2009).

Google Scholar

[4] K. Zettl: The Mediterranean Journal of Computers and Networks, Vol. 3 (4) (2007): pp.142-150.

Google Scholar

[5] Z. Ghassemlooy: Free Space Optical Communications (The University of Northumbria, Newcastle UK, 2008).

Google Scholar

[6] E. Leitgeb et al.: inProc. of the 9th international conference on transparent optical networks(Rome, 2007).

Google Scholar

[7] A. Belmonte and J. M. Kahn: Journal of Lightwave Technology, vol. 31 (9) (2013): pp.1383-1387.

Google Scholar

[8] A. Belmonte and J. M. Kahn: Journal of Optical Communication Networks, vol. 3 (11) (2011): pp.830-838.

Google Scholar

[9] A. Belmonte and J. M. Kahn: Optics Express, vol. 18 (4) (2010): pp.3928-3937.

Google Scholar

[10] J. Wang, J. M. Kahn and K. Y. Lau: Applied Optics, vol. 41 (12) (2002): pp.7592-7602.

Google Scholar

[11] D. M. Forin, G. Incerti, G.M. TosiBeleffi, A.L.J. Teixeira, L.N. Costa, P.S. De Brito Andre, B. Geiger, E. Leitgeb and F. Nadeem. Free Space Optical Technologies, Trends in Telecommunications Technologies. InTech, (2010).

DOI: 10.5772/8488

Google Scholar

[12] J. Wells: IEEE Microwave Magazine, vol. 10 (3) (2009): p.104–112.

Google Scholar

[13] E. Leitgeb et al.: inProc. Of the 10th International Conference on Telecommunications (Zagreb, 2009).

Google Scholar

[14] C. Chlestil et al: inProc. of the 8th international conference on transparent optical networks(Nottingham, 2006).

Google Scholar

[15] D. Chung: Carbon, Vol. 39 (2) (2001): pp.279-285.

Google Scholar

[16] C. von Klemperer, et al.: inProc. 17th International Conference on Composite Materials(Edinburgh, 2009).

Google Scholar

[17] L. Xing, J. Liu, S. Ren: Journal of Material Engineering, Vol. 1 (1998): pp.19-21.

Google Scholar

[18] X. Luo, D. Chung: Composites: Part B, Vol. 30 (3) (1999): p.227–31.

Google Scholar

[19] M. Schlechter: EMI: Materials and Technologies. http: /www. electronics. ca.

Google Scholar

[20] J. Parimal et al: Advanced Materials and Processes Technology. http: /ammtiac. alionscience. com/pdf/AMPQ4_3. pdf.

Google Scholar

[21] J. Wahl et al: Recent Advances in ALONTM Optical Ceramic. http: /www. surmet. com/ pdfs/news-and-media/SURMET-WHITE-PAPER-Recent-Advances-in-ALON(TM)- Optical-Ceramic. pdf.

Google Scholar