Parameter Extraction of a PM Machine Employing 3D Finite Element Analysis Tools for Model Predictive Control Schemes

Article Preview

Abstract:

This paper introduces a permanent magnet (PM) machine model accounting for saturation effects and non-sinusoidal electromotive force (EMF) employed in model predictive control schemes. The procedure of the model parameters determination is based on the three dimensional finite element analysis (FEA) considering saturation and cross-coupling effects. The conventional equivalent circuit model is subject to modifications so as to incorporate data derived from FEA enabling the model predictive control strategies to obtain proper actions for the converter operation based on the accurate prediction of the machine performance. The regeneration of the n-order harmonic components of the non-sinusoidal EMF is attained by combining methods of superposition and approximation estimating the output voltage at the machine terminals for different loading and speed. Developed model simulation results have been validated by experiments performed on an inset PM machine prototype.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

355-361

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. E. Kakosimos and A. G. Kladas, Modeling of interior permanent magnet machine using combined field-circuit analysis, in 14th IEEE International Conference on Electrical Machines, 2010, p.1–6.

DOI: 10.1109/icelmach.2010.5608266

Google Scholar

[2] Y. Wang, J. Zhu, S. Wang, Y. Guo, and W. Xu, Nonlinear Magnetic Model of Surface Mounted PM Machines Incorporating Saturation Saliency, IEEE Transactions on Magnetics, vol. 45, no. 10, p.4684–4687, (2009).

DOI: 10.1109/tmag.2009.2022641

Google Scholar

[3] G. Qi, J. T. Chen, Z. Q. Zhu, D. Howe, L. B. Zhou, and C. L. Gu, Influence of Skew and Cross-Coupling on Flux-Weakening Performance of Permanent-Magnet Brushless AC Machines, IEEE Trans. on Magn., vol. 45, no. 5, p.2110–2117, (2009).

DOI: 10.1109/tmag.2009.2013244

Google Scholar

[4] P. E. Kakosimos, A. G. Sarigiannidis, M. E. Beniakar, A. G. Kladas, and C. Gerada, Induction Motors versus Permanent Magnet Actuators for Aerospace Applications, IEEE Trans. Ind. Electron. In Press, (2013).

DOI: 10.1109/tie.2013.2274425

Google Scholar

[5] E. Levi and V. a. Levi, Impact of dynamic cross-saturation on accuracy of saturated synchronous machine models, IEEE Transactions on Energy Conversion, vol. 15, no. 2, p.224–230, Jun. (2000).

DOI: 10.1109/60.867004

Google Scholar

[6] P. Kakosimos, A. Kladas, and S. Manias, Fast Photovoltaic System Voltage or Current Oriented MPPT Employing a Predictive Digital Current-Controlled Converter, IEEE Transactions on Industrial Electronics, vol. 60, no. 12, p.5673 – 5685, Dec. (2013).

DOI: 10.1109/tie.2012.2233700

Google Scholar

[7] P. E. Kakosimos, E. M. Tsampouris, A. G. Kladas, and C. Gerada, Aerospace Actuator Design: a Comparative analysis of Permanent Magnet and Induction Motor configurations, in 15th IEEE International Conference on Electrical Machines, (2012).

DOI: 10.1109/icelmach.2012.6350242

Google Scholar

[8] S. Zhang, K. -J. Tseng, D.M. Vilathgamuwa, T.D. Nguyen, and X. -Y. Wang, Design of a Robust Grid Interface System for PMSG-Based Wind Turbine Generators, IEEE Transactions on Industrial Electronics, vol. 58, Jan. 2011, pp.316-328.

DOI: 10.1109/tie.2010.2044737

Google Scholar

[9] S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, Model Predictive Control—A Simple and Powerful Method to Control Power Converters, IEEE Transactions on Industrial Electronics, vol. 56, Jun. 2009, pp.1826-1838.

DOI: 10.1109/tie.2008.2008349

Google Scholar

[10] P. Kakosimos, E. Tsampouris, and A. Kladas, Design Considerations in Actuators for Aerospace Applications, IEEE Transactions on Magnetics, vol. 29, no. 5, May (2013).

DOI: 10.1109/tmag.2013.2239975

Google Scholar

[11] K.J. Meessen, P. Thelin, J. Soulard, and E.A. Lomonova, Inductance Calculations of Permanent-Magnet Synchronous Machines Including Flux Change and Self- and Cross-Saturations, IEEE Transactions on Magnetics, vol. 44, 2008, pp.2324-2331.

DOI: 10.1109/tmag.2008.2001419

Google Scholar

[12] T.L. Vandoorn, F.M. De Belie, T.J. Vyncke, J.A. Melkebeek, and P. Lataire, Generation of Multisinusoidal Test Signals for the Identification of Synchronous-Machine Parameters by Using a Voltage-Source Inverter, IEEE Transactions on Industrial Electronics, vol. 57, Jan. 2010, pp.430-439.

DOI: 10.1109/tie.2009.2031135

Google Scholar

[13] G. Qi, J.T. Chen, Z.Q. Zhu, D. Howe, L.B. Zhou, and C.L. Gu, Influence of Skew and Cross-Coupling on Flux-Weakening Performance of Permanent-Magnet Brushless AC Machines, IEEE Transactions on Magnetics, vol. 45, 2009, pp.2110-2117.

DOI: 10.1109/tmag.2009.2013244

Google Scholar

[14] F. Marignetti, S. Member, V.D. Colli, and Y. Coia, Design of Axial Flux PM Synchronous Machines Through 3-D Coupled Electromagnetic Thermal and Fluid-dynamical Finite-element Analysis, IEEE Transactions on Industrial Electronics, vol. 55, 2008, pp.3591-3601.

DOI: 10.1109/tie.2008.2005017

Google Scholar

[15] P. Zhou, D. Lin, G. Wimmer, N. Lambert, and Z.J. Cendes, Determination of d-q Axis Parameters of Interior Permanent Magnet Machine, IEEE Transactions on Magnetics, vol. 46, 2010, pp.3125-3128.

DOI: 10.1109/tmag.2010.2043507

Google Scholar

[16] Y. Wang, J. Zhu, S. Wang, Y. Guo, and W. Xu, Nonlinear Magnetic Model of Surface Mounted PM Machines Incorporating Saturation Saliency, IEEE Transactions on Magnetics, vol. 45, 2009, pp.4684-4687.

DOI: 10.1109/tmag.2009.2022641

Google Scholar

[17] M. E. Beniakar, A. G. Sarigiannidis, and P. E. Kakosimos, Multi-objective Evolutionary Optimization of a Surface Mounted PM Actuator with Fractional Slot Winding for Aerospace Applications, IEEE Trans. Magn. Press.

DOI: 10.1109/tmag.2013.2285497

Google Scholar

[18] E. M. Tsampouris, P. E. Kakosimos, and A. G. Kladas, High temperature permanent magnet machine actuators for aerospace applications, Materials Science Forum, vol. 721, p.141–146, (2012).

DOI: 10.4028/www.scientific.net/msf.721.141

Google Scholar