Micro/Nano Surface Texturing in Si Using UV Femtosecond Laser Pulses

Article Preview

Abstract:

A fast laser texturing technique has been utilized to produce micro/nanosurface textures in Silicon by means of UV femtosecond laser. We have prepared good absorber surface for photovoltaic cells. The textured Silicon surface absorbs the incident light greater than the non-textured surface. The results show a photovoltaic current increase about 21.3% for photovoltaic cell with two-dimensional pattern as compared to the same cell without texturing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-46

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Major, Ablation an deposition by pulsed laser, Krakow, (2002).

Google Scholar

[2] M. J. Jackson, W. O Neill, Laser micro drilling of tool steel using Nd YAG lasers, Journal of Materials Processing Technology 142 (2003) 517-525.

DOI: 10.1016/s0924-0136(03)00651-4

Google Scholar

[3] R. E. Russo, X. Mao, and S. S. Mao, (The physics of laser ablation in chemical analysis), Analytical Chemistray, 74, 70A-77A, (2002).

Google Scholar

[4] T. Kubarsepp, P. Karha, and E. Ikonen, Appl. Opt. 39, 1(2000).

Google Scholar

[5] J.E. Carey, C. H. Couch, M. Shen and E. Mazur, Opt. Lett. 30, 1773 (2005).

Google Scholar

[6] C. H. Couch, J.E. Carey, J. M. Wrrender, M. J. Aziz, E. Mazur and F. Y. Genin, Appl. Phys. Lett. 84, 1850(2004).

Google Scholar

[7] Z. Jingtao, L. Wen, Z. Ming, Y. Gang, C. Xiao, C. Deyin, Z. Li, SPIE, 10. 1117_ 12. 571965(2005).

Google Scholar

[8] R. A. Myers, R. Farrell, A. Karger, J. Carey and E. Mazur, Enhancing nearinfrared avalanche photodiode performance by femtosecond laser microstructuring, Appl. Opt. 45, 35(2006).

DOI: 10.1364/ao.45.008825

Google Scholar

[9] M. Lipiski, P. Ziba, A. Kamiski, Crystalline silicon solar cells, Foundation of materials design, Research Signpost T. C. 37_661 (2) (2006) 285_308.

Google Scholar

[10] M. Green, J. Zhao, A. Wang, and S. Wenham, Progress and outlookfor high effective crystalline silicon solar cells, Solar Energy & Solar Cells 65(2001) 9_16.

DOI: 10.1016/s0927-0248(00)00072-6

Google Scholar

[11] J. F. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman, R. P. Mertens, Advanced cost effective crystalline silicon solar cells technologies, Solar Energy Materials and Solar Cells 65 (2001) 249_259.

DOI: 10.1016/s0927-0248(00)00100-8

Google Scholar

[12] D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, Texturing industrial multicrystalline silicon solar cells, Solar Energy 76 (2004) 277_283.

DOI: 10.1016/j.solener.2003.08.019

Google Scholar

[13] A. M. Taleb, K. A. Al-Naimee, S. F. Abdalah, Riccardo Meucci, F. T. Arecchi Nanostructure Formation in Silicon Photovoltaic Cells by Femtosecond Laser Pulses, Materials Science Forum Vol. 670 (2011) pp.118-121.

DOI: 10.4028/www.scientific.net/msf.670.118

Google Scholar

[14] Application of laser in multicrystalline silicon surface processing. L. A. Dobrazanski, A. Draygala, P. Panek, M. Lipinski, P. Zieba.

Google Scholar

[15] Silicon Dioxide Layer Key to High Efficiency Crystalline Solar Cells.

Google Scholar

[16] Saleem H. Zaidi, An_ Shyang Chu, and S. R. J. Brueck, Optical properties of nanoscale, onedimensional silicon grating structures J. Appl. Phys. 80 (12), p. 6997_7008(1996).

DOI: 10.1063/1.363774

Google Scholar

[17] Z. Yu, L. Chen, W. Wu, H. Ge, and S. Y. Chou, Fabrication of nanoscale with reduced line edge roughness using nanoimprinting lithography J. Vac, Sci, Technol. B21(5), P. 2089_2092 (2003).

DOI: 10.1116/1.1609471

Google Scholar