Finite Element Analysis of Precipitation Effects on Ni-Rich NiTi Shape Memory Alloy Response

Article Preview

Abstract:

Thermomechanical properties of precipitated NiTi shape memory alloys are investigated using the finite element method. The precipitated material microstructure is explored using a representative volume element with embedded Ni4Ti3 precipitates. Features such as precipitate coherency and distribution of Ni within the matrix due to the precipitation process are individually explored and characterized. Changes in the material’s macroscopic thermomechanical response due to this precipitation are determined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-71

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. J. Hartl and D. C. Lagoudas, Aerospace applications of shape memory alloys, P. I. Mech. Eng. G-J. Aer., pp.535-552, (2007).

Google Scholar

[2] L. Petrini and F. Migliavacca, Biomedical Applications of shape memory alloys, J. Metall., p.501483, (2011).

Google Scholar

[3] J. Frenzel, E. P. George, A. Dlouhy, C. Somsen, M. F. -X. Wagner and G. Eggeler, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Mat., pp.3444-3458, (2010).

DOI: 10.1016/j.actamat.2010.02.019

Google Scholar

[4] K. Gall, H. Sehitoglu, Y. Chumlyakov, I. Kireeva and H. Maier, The influence of aging on critical transformation stress levels and martensite start temperatures in NiTi, J. Eng. Mater. Technol., vol. 121, pp.535-552, (1999).

DOI: 10.1115/1.2815995

Google Scholar

[5] K. Otsuka and X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. Mater. Sci., vol. 50, pp.511-678, (2005).

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[6] D. C. Lagoudas, D. Hartl, Y. Chemisky, L. Machado and P. Popov, Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys, Int. J. Plast., pp.32-33, 155-183, (2012).

DOI: 10.1016/j.ijplas.2011.10.009

Google Scholar

[7] N. Zhou, C. Shen, M. -X. Wagner, G. Eggeler, M. Mills and Y. Wang, Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni, Acta Mater., vol. 58, pp.6685-6694, (2010).

DOI: 10.1016/j.actamat.2010.08.033

Google Scholar

[8] S. Lejunes and S. Bourgeois, Abaqus plugins for generating boundary conditions for homogenization problems, (2010).

Google Scholar

[9] S. Li and A. Wongsto, Unit cells for micromechanical analyses of particle-reinforced composites, Mech. Mater., vol. 36, pp.543-572, (2004).

DOI: 10.1016/s0167-6636(03)00062-0

Google Scholar

[10] D. Schryvers and W. Y. Z. Tirry, Measuring strain fields and concentration gradients around Ni4Ti3 precipitates, Mater. Sci. Eng. A, pp.438-440, 485-488, (2006).

DOI: 10.1016/j.msea.2006.02.166

Google Scholar

[11] M. Wagner and W. Windl, Elastic anisotropy of Ni4Ti3 from first principles, Scr. Mater., vol. 60, no. 4, pp.207-210, (2009).

DOI: 10.1016/j.scriptamat.2008.09.028

Google Scholar