[1]
R.T. Shuey, F. Barlat, M.E. Karbin et al, Experimental and analytical investigations on plane strain toughness for 7085 aluminum alloy, Metall. Mater. Trans. A, 40A (2009) 365-376.
DOI: 10.1007/s11661-008-9703-2
Google Scholar
[2]
Harold Luong, Hill Michael R. The effects of laser peening on high cycle fatigue in 7085-T7651 aluminum alloy, Mater Sci Eng A, 477 (2008) 208-216.
DOI: 10.1016/j.msea.2007.05.024
Google Scholar
[3]
Cao Zhi-qing, Feng Ya-li, Wang Min-tong, et al. Optimization of final thermo-mechanical treatment process on 7050 aluminum alloy, Journal of Dalian University of Technology, 52 (2012) 823-828.
Google Scholar
[4]
CHEN Xue-hai, CHEN Kang-hua, LIANG Xin, et al. Materials Science and Engineering of Powder Metallurgy, Materials Science and Engineering of Powder Metallurgy, 16 (2011) 225-230.
Google Scholar
[5]
JIA Le, CHEN Kang-hua, CHEN Song-yi, et al. Flow stress and softening behavior of 7085 aluminum alloy during compression deformation at elevated temperature, Materials Science and Engineering of Powder Metallurgy, 17 (2012) 423-429.
Google Scholar
[6]
CHEN Song-yi, CHEN Kang-hua, LIANG Xin, et al. Effect of aging treatment on microstructure and corrosion properties of forged 7085 aluminum alloy, Journal of Central South University (Science and Technology), 43 (2012) 476-482.
Google Scholar
[7]
Lizi He, Xiehua Li, Pei Zhu et al. Effects of high magnetic field on the evolutions of constituent phases in 7085 aluminum alloy during homogenization, Mater. Charact., 71 (2012) 19-23.
DOI: 10.1016/j.matchar.2012.05.014
Google Scholar
[8]
L.P. Troeger, E.A. Starke Jr. Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al–Mg–Si–Cu alloy, Mater Sci Eng A, 293 (2000) 19-29.
DOI: 10.1016/s0921-5093(00)01235-1
Google Scholar
[9]
L. K. BERG, J. GJØNNES, V. HANSEN et al. GP-ZONES IN Al–Zn–Mg ALLOYS AND THEIR ROLE IN ARTIFICIAL AGING, Acta Mater., 49 (2001) 3443-3451.
DOI: 10.1016/s1359-6454(01)00251-8
Google Scholar
[10]
Buha J, Lumley RN, Crosky AG. Secondary aging in an aluminum alloy 7050, Mater Sci Eng, 492A (2008) 1-10.
Google Scholar
[11]
Yan-Ping Xiao, Qing-Lin Pan, Wen-Bin Li et al. Influence of retrogression and re-aging treatment on corrosion behavior of an Al–Zn–Mg–Cu alloy, Mater. Des., 32 (2011) 2149–2156.
DOI: 10.1016/j.matdes.2010.11.036
Google Scholar
[12]
Xinyan Zhao, G.S. Frankel. Quantitative study of exfoliation corrosion: Exfoliation of slices in humidity technique, Corros. Sci., 49 (2007) 920-938.
DOI: 10.1016/j.corsci.2006.05.037
Google Scholar
[13]
Li JF, Birbilis N, Li CX, Jia ZQ, Cai B, Zheng ZQ. Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminum alloy AA7150. Mater Charact, 60 (2009) 1334-41.
DOI: 10.1016/j.matchar.2009.06.007
Google Scholar