Effect of Heat Treatment and Alloying Element on Impact Energy Absorption of AlSi10 Casting Alloys

Article Preview

Abstract:

The automotive applications using heat-treatable aluminum cast alloys are designed for high impact energy which can be improved using specified casting process and different heat treatment. In this study an economical and convent squeeze casting machine was used to produce the u-profile with 3mm wall thickness under controlled solidification conditions. The casted samples were used for mechanical and metallographical characterization. The mechanical properties of alloys containing different amount of Fe, Mn und Mg were determined as a function of different heat treatment condition such as modified T7 and Silicon Spheroidization Treatment (SST). The microstructure of casted alloys were quantificational determined by a combination of light optical microscope and scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS) module to identify the morphology and chemical composition of intermetallic eutectic phases. The results of Charpy impact test show that impact energy increases after modified T7 or SST heat treatment significantly compared with the as cast state. Furthermore the impact energy is less in the higher Mg containing alloys (0.15wt.%) compared with the less Mg containing alloy (0.07wt.%).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

267-272

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.F. Ibrahim, E. Samuel, A.M. Samuel, A.M.A. Al-Ahmari, F.H. Samuel, Impact toughness and fractography of Al–Si–Cu–Mg base alloys, Materials and Design 32 (2011) 3900-3910.

DOI: 10.1016/j.matdes.2011.02.058

Google Scholar

[2] C. H. Caceres, I. L. Svensson, J. A. Taylor, Strength – Ductility behavior of Al-Si-Cu-Mg casting alloys in T6 temper, Int. J. Cast Metals Res., 2003, 15, 531-543.

DOI: 10.1080/13640461.2003.11819539

Google Scholar

[3] Ma. Aibin, Kazutaka Suzuki, Naobumi Saito, Yoshinori Nishida, Makoto Takagi, Ichinori Shigematsu, Hiroyuki Iwata, Impact toughness of an ingot hypereutectic Al–23 mass% Si alloy improved by rotary-die equal-channel angular pressing, Materials Science and Engineering A 399 (2005).

DOI: 10.1016/j.msea.2005.03.009

Google Scholar

[4] D. Dispinar, J. Campbell, Effect of casting conditions on aluminium metal quality. J. Mater. Process. 2007, Technol. 182, S. 405-410.

DOI: 10.1016/j.jmatprotec.2006.08.021

Google Scholar

[5] C.M. Dinnis, J.A. Taylor, A.K. Dahle, As-cast morphology of iron-intermetallics in Al–Si foundry alloys. Scripta Mater. 2005, 53 (8), 955-958.

DOI: 10.1016/j.scriptamat.2005.06.028

Google Scholar

[6] P. N. Crepeau, Effect of iron in Al–Si casting alloys: a critical review. AFS Trans. 1995, 103, 361-366.

Google Scholar

[7] L. Ceschini, I. Boromei, A. Morri, S. Seifeddine, I.L. Svensson, Microstructure, tensile and fatigue properties of the Al–10%Si–2%Cu alloy with different Fe and Mn content cast under controlled conditions, Journal of Materials Processing Technology 209 (2009).

DOI: 10.1016/j.jmatprotec.2009.05.030

Google Scholar

[8] S. Shivkumar, L. Wang, C. Keller, Impact properties of A356-T6 alloys, Journal of Materials engineering and performance, Volume 3(1), Feb. 1994 – 83.

DOI: 10.1007/bf02654503

Google Scholar

[9] S. Murali, K. S. Raman and K. S. S. Murthy, Effect of magnesium, iron (impurity) and solidification rates on the fracture toughness of AI-7Si-0. 3Mg casting alloy, Materials Science and Engineering, A 151 (1992) 1-10.

DOI: 10.1016/0921-5093(92)90175-z

Google Scholar

[10] K. G. Basavakumar, P.G. Mukunda, M. Chakraborty, Influence of grain refinement and modification on microstructure and mechanical properties of Al–7Si and Al–7Si–2. 5Cu cast alloys, Materials characterization 59 (2008) 283-289.

DOI: 10.1016/j.matchar.2007.01.011

Google Scholar

[11] J. E. Gruzleski, B. M. Closset, The treatment of liquid aluminum–silicon alloys, American Foundrymen's Society, Inc., Des Plaines, IL; (1990).

Google Scholar

[12] F. Paray, J. E. Gruzleski, Factors to consider in modification. AFS Trans 1994; 102, 833–42.

Google Scholar

[13] F. Paray, B. Kulunk, J. E. Gruzleski, Impact properties of Al–Si foundry alloys. Int. J Cast Met Res, 2000, 17-37.

DOI: 10.1080/13640461.2000.11819385

Google Scholar

[14] C. Zhong, L. J. Shan, J. W. Qi, L. Linn, F. H. Zhi, solidification behavior of Al-7%Si-Mg casting alloys, Trans. Nonferrous Met. Soc. China, Vol. 15, No. 1, Feb. 2005, 40-44.

Google Scholar

[15] S. Murali, K. S. Raman, S. S. Murthy, Effect of Mg, Fe and solidification rates on fracture toughness of Al7Si0. 3Mg casting alloy, J. Mater Sci Eng, 1992, A 151 (1), 1-10.

DOI: 10.1016/0921-5093(92)90175-z

Google Scholar

[16] A. T. Joenoes, J. E. Gruzleski, Mg effect on the microstructure of unmodified and modified Al-Si alloys [J]. Cast Met, 1991, 4 (2), 62 – 71.

DOI: 10.1080/09534962.1991.11819058

Google Scholar

[17] A. John, Taylor, Iron-containing intermetallic phases in Al-Si based casting alloys, Procedia Materials Science 1 (2012) 19-33.

DOI: 10.1016/j.mspro.2012.06.004

Google Scholar

[18] A. Couture, Iron in aluminium casting alloys - a literature survey, American Foundryman's Society International Cast Metals Journal 6 (4), 1981, pp.9-17.

Google Scholar

[19] S. Murali, et al., Effect of trace additions (Be, Cr, Mn and Co) on the mechanical properties and fracture toughness of Fe-containing Al-7Si-0. 3Mg alloy, Cast Metals 6 (4), 1994, pp.189-198.

DOI: 10.1080/09534962.1994.11819149

Google Scholar

[20] C. M. Dinnis, J. A. Taylor, Manganese as a neutraliser, of iron-related porosity in Al-Si foundry alloys. 5th Decennial Conference on Solidification Processing (SP07), Sheffield, UK, 2007 pp.566-570.

Google Scholar

[21] D. L. Zhang, L. H. Zheng, D. H. StJohn, Effect of a short solution treatment time on microstructure and mechanical properties of modified Al–7 wt. % Si–0. 3 wt. % Mg alloy. J. Light Met. 2, 2002, 27-36.

DOI: 10.1016/s1471-5317(02)00010-x

Google Scholar

[22] C. H. CACERES, C. J. DAVIDSON, J.R. GRIFFITHS, Q.G. WANG, The Effect of Mg on the Microstructure and Mechanical Behavior of Al-Si-Mg Casting Alloys, METALLURGICAL AND MATERIALS TRANSACTIONS A Vol. 30A, October1999, 2611 - 2618.

DOI: 10.1007/s11661-999-0301-8

Google Scholar

[23] E. Ogris, Development of Al-Si-Mg Alloys for Semi-Solid Processing and Silicon Spheroidization Treatment (SST) for Al-Si Cast Alloys, Dissertation ETH Nr. 14803, Swiss Federal Institute of Technology Zurich, (2002).

DOI: 10.4028/www.scientific.net/msf.396-402.149

Google Scholar