High Temperature Tensile Behaviour of the A354 Aluminum Alloy

Article Preview

Abstract:

The high temperature tensile behaviour of the A354 casting aluminum alloy was investigated also evaluating the influence of secondary dendrite arm spacing (SDAS). Cast specimens were produced through a gradient solidification equipment, obtaining two different classes of SDAS, namely 20-25 µm (fine microstructure) and 40-50 µm (coarse microstructure). After hot isostatic pressing and T6 heat treatment, the samples underwent mechanical characterization both at room and high temperature (200 °C). Results of tensile tests and hardness measurements were related to the microstructural features and fractographic characterization, in order to investigate the effect of microstructure and high temperature exposure on the mechanical behaviour of the alloy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

443-448

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Baradarani, R. Raiszadeh, Precipitation hardening of cast Zr-containing A356 aluminium alloy, Mater. Des. 32 (2011) 935–940.

DOI: 10.1016/j.matdes.2010.08.006

Google Scholar

[2] A. M. A. Mohamed, F.H. Samuel, S. Al kahtani, Microstructure, tensile properties and fracture behaviour of high-temperature Al-Si-Mg-Cu cast alloys, Mater. Sci. Eng. A 577 (2013) 64-72.

DOI: 10.1016/j.msea.2013.03.084

Google Scholar

[3] L. Ceschini, A. Jarfors, Al. Morri, An. Morri, F. Rotundo, S. Seifeddine, S. Toschi, Influence of SDAS on the high temperature tensile behavior of the C355 Al alloy, Proceedings of THERMEC 2013 (Las Vegas, December 2013), Materials Science Forum (2014).

DOI: 10.4028/www.scientific.net/msf.783-786.228

Google Scholar

[4] L. F. Mondolfo; Aluminum Alloys: Structure & Properties; Butterworths & Co, (1976).

Google Scholar

[5] S. Seifeddine, 2006. Characteristics of cast Aluminium–silicon alloys—microstructures and mechanical properties. Linköping Studies in Science and Technology, Dissertation No. 1058, ISBN 91-85643-42-4.

Google Scholar

[6] ASTM E 3-01 Standard practice for preparation of metallographic specimens. ASM International; (2007).

Google Scholar

[7] ASTM E 10-08 Standard test method for Brinell hardness of metallic materials; (2007).

Google Scholar

[8] ISO 6892-1: 2009, Metallic materials - Tensile testing - Part 1: Method of test at room temperature.

Google Scholar

[9] ISO 6892-2: 2011, Metallic materials - Tensile testing - Part 2: Method of test at elevated temperature.

Google Scholar

[10] J. G. Kaufman and E. L. Rooy, Aluminum alloy castings: properties, processes, and applications; 2004, Materials Park, OH, ASM International.

Google Scholar

[11] Wang, Microstructure effects on the tensile and fracture behaviour of Aluminum casting Alloys A356/357, Metallurgical and materials transactions A, 34A (2003) 2887-2899.

DOI: 10.1007/s11661-003-0189-7

Google Scholar

[12] L. Ceschini, Al. Morri, An. Morri, G. Pivetti, Predictive equations of the tensile properties based on alloy hardness and microstructure for an A356 gravity die cast cylinder head, Mater. Des., 32(3) (2011) 1367–1375.

DOI: 10.1016/j.matdes.2010.09.014

Google Scholar

[13] P.A. Rometsch, G.B. Schaffer; An age hardening model for Al–7Si–Mg casting alloys; Mater. Sci. Eng. A, 325(2002) 424–434.

DOI: 10.1016/s0921-5093(01)01479-4

Google Scholar

[14] A.M. Samuel, F.H. Samuel, A metallographic study of porosity and fracture behavior in relation to the tensile properties in 319. 2 end chill castings, Metall. Trans. A 26A (1995) 2359–2372.

DOI: 10.1007/bf02671250

Google Scholar