[1]
Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period till 2030. (Aviation materials and technologies, 2012, №S) p.7–17.
Google Scholar
[2]
Kablov E.N. Aerospace materials science. (All materials. Encyclopedic directory. 2008. №3) p.2–14.
Google Scholar
[3]
Antipov V.V. Strategic directions of development of titanium, magnesium, beryllium and aluminum alloys. (Aviation materials and technologies, 2012, №S) p.157–167.
Google Scholar
[4]
Antipov V.V., Senatorova O.G., Tkachenko E.A., Vakhromov R.O. Aluminum wrought alloys. (Aviation materials and technologies, 2012, №S) p.167–182.
Google Scholar
[5]
Lukina E.A., Alekseev A.A., Hokhlatova L.B., Oglodkov M.S. Patterns of forming of the main strengthening phases in alloys of 1424 Al-Mg-Li-Zn systems and V-1461 Al-Cu-Li-Zn-Mg systems. (Metal Science and Heat Treatment, 2013. №9). p.12–17.
DOI: 10.1007/s11041-014-9655-7
Google Scholar
[6]
Kablov E.N., Ospennikova O.G., Vershkov A.K. Rare metals and rare earth elements – materials of modern and high technologies of the future. (Proceeding of VIAM. 2013. №2).
Google Scholar
[7]
Nikulin I., Kipelova A., Gazizov M., Teleshov V., Zakharov V., Kaibyshev R. Novel Al–Cu–Mg–Ag alloy for high temperature applications. (Proceeding of 12-th ICAA. Japan. 2010) p.2303–2308.
Google Scholar
[8]
Teleshov V.V., Andreev D.A. Influence of chemical composition on structure, mechanical properties and characteristics of treshchinostoykost of the pressed alloys of Al-Cu-Mg-Ag-Xi system is able Т1 (Technology of light alloys. 2013. №4) p.20–29.
Google Scholar
[9]
Grigoriev M.V., Antipov V.V., Vakhromov R.O., Senatorova O.G., Ovsyannikov B.V. Structure and properties of ingots from Al-Cu-Mg system alloy with silver microadditives. (Aviation materials and technologies, 2013, №3). p.3–6.
Google Scholar
[10]
Chabina E.B., Alekseev A.A., Filonov E.F., Lukina E.A. Application of methods of analytical microscopy and the rentgenostrukturny analysis for research of structural and phase condition of materials /(Proceeding of VIAM. 2013. №5).
Google Scholar
[11]
Hokhlatova L.B., Kolobnev N.I., Oglodkov M.S., Lukina E.A., Sbitneva S.V. Change of phase structure depending on modes of aging and structure of semi-finished products of alloy V-1461 (Metal Science and Heat Treatment, 2012. №6) p.20–24.
DOI: 10.1007/s11041-012-9498-z
Google Scholar
[12]
Ryabov D.K., Kolobnev N.I. Change of mechanical properties of alloy 1913 at two-level artificial aging (Aviation materials and technologies, 2013, №4). p.3–67.
Google Scholar
[13]
Ryabov D.K., Kolobnev N.I., Samokhvalov S.V., Vakhromov O.V. Change of mechanical and corrosion properties of alloy 1933 at artificial aging. (Materials science questions, 2013, №4).
Google Scholar
[14]
Ringer S.P., Polmear I.J., Sakurai T. Effect of additions of Si and Ag to ternary Al–Cu–Mg alloys in the α+S phase field. (Materials Science and Engineering. A. 1996. V. 217–218) p.273–276.
DOI: 10.1016/s0921-5093(96)10341-5
Google Scholar
[15]
De Geuser F., Bley F., Deschamps A. Early stage of Ω phase precipitation in Al–Cu–Mg–Ag observed in situ with and without applied stress by small angle X-ray scattering. (Proceeding of 12-th ICAA. Japan. 2010) pp.475-480.
Google Scholar
[16]
Antipov V.V., Vakhromov R.O., Phedorenko T.P., Lukina E.A. Structure and Properties of Semiproducts from Al–Cu–Mg–Ag V-1213 Alloy. (Proceeding of 12-th ICAA. Japan. 2010) pp.2405-2410.
Google Scholar
[17]
Wang S.B., Chen J.H., Yin M.J., Liu Z.R., Yuan D.W., Liu J.Z., Liu C.H., Wu C.L. Double-atomic-wall-based dynamic precipitates of the early-stage S-phase in Al–Cu–Mg alloys. (Acta Materialia. 2012. V. 60. №19) p.6573–6580.
DOI: 10.1016/j.actamat.2012.08.023
Google Scholar
[18]
Antipov V.V., Senatorova O.G., Tkachenko E.A., Vakhromov R.O. High-strength Al–Zn–Mg–Cu alloys and light Al–Li alloys. (Metal Science and Heat Treatment. 2011. V. 53. №9–10. ) p.428–433.
DOI: 10.1007/s11041-012-9410-x
Google Scholar