p.617
p.622
p.628
p.634
p.640
p.646
p.652
p.658
p.664
Interfacial and Strain Energy Analysis from Ab Initio Based Hierarchical Multi-Scale Modelling: The Al-Mg-Si Alloy β'' Phase
Abstract:
Precipitate-host lattice interface studies have not traditionally been viewed as requiring hybrid model schemes for accurate determination of the interfacial and strain energies. On the other hand, the interfaces of main hardening precipitates of age hardenable alloys are often characterized by both high levels of coherency and considerable subsystem misfits. Near the interface, linear elasticity theory evidently fails in such cases to fully correctly predict the subsystem strains. Further, density functional theory based studies on isolated supercells may prove inadequate in capturing strain influences on the chemical interactions underlying the interfacial energy. Recent work within the group has focussed on the implementation of a first principles based hierarchical multi-scale model scheme, capable of determining the interfacial and strain energies for the same model system. Choosing the fully coherent Al-Mg-Si alloy main hardening phase β'' as our test system and limiting our studies to 2D, we discuss the variation in these energies with changing precipitate cross-section morphology and size.
Info:
Periodical:
Pages:
640-645
Citation:
Online since:
June 2014
Price:
Сopyright:
© 2014 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: