Modelling the Combined Effect of Room Temperature Storage and Cold Deformation on the Age-Hardening Behaviour of Al-Mg-Si Alloys-Part 1

Article Preview

Abstract:

In the present paper, an extended age hardening model for Al-Mg-Si alloys is presented. In this new approach the combined precipitation, yield strength and work hardening model, known as NaMo Version 1, has been further developed to account for the effects of room temperature storage and cold deformation on the resulting age hardening behaviour. Incorporation of these two new stages in NaMo largely increases the versatility of the model by allowing simulations of complex multi-stage industrial processing involving thermomechanical treatment as well. Part 1 of this work deals with the theoretical background and experimental validation of the extended version of NaMo, while Part 2 focuses on the new applications of the model by showing some numerical examples related to production of automotive body panels.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

670-675

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Schäfer, O.R. Myhr, H. -J. Brinkman, O. Engler, J. Hirsch. Paper presented at present conference.

Google Scholar

[2] G. Edwards, K. Stiller, G. Dunlop, M. Couper, Acta Mater. 46 (1998), 3893-3904.

Google Scholar

[3] L. Zhen, W. D. Fei, S.B. Kang, H. W. Kim, J. of Mater. Sci. 32 (1997), 1895-(1902).

Google Scholar

[4] M. Murayama, K. Hono, M. Saga, M. Kikuchi, Mater. Sci. Eng. A. 250 (1998), 127-132.

Google Scholar

[5] I. Dutta, S.M. Allen, J. Mater. Sci. Lett. 10 (1991), 323-326.

Google Scholar

[6] W.F. Miao, D.E. Laughlin, Scripta Mater. 40 (1999), 873-878.

Google Scholar

[7] D.W. Pashley, M.H. Jacobs, J.T. Vietz, Phil. Mag. 16 (1967), 51-76.

Google Scholar

[8] S. Esmaeili, D.J. Lloyd, W.J. Poole, Acta Mater. 51 (2003), 2243-2257.

Google Scholar

[9] S. Esmaeili, X. Wang, D.J. Lloyd, W.J. Poole, Metall. Mater. Trans. A. 34A (2003), 751-763.

Google Scholar

[10] X. Wang, W.J. Poole, S. Esmaeili, D.J. Lloyd, J.D. Embury, Metall. Mater. Trans. A. 34A (2003), 2913-2923.

Google Scholar

[11] M. Murayama, K. Hono, Acta Mater. 47 (1999), 1537-1548.

Google Scholar

[12] E. Nes, Acta Mater. 43 (1995), 2189-2207.

Google Scholar

[13] Y. Birol, Scripta Mater. 52 (2005), 169-173.

Google Scholar

[14] K. Teichmann, C.D. Marioara, S.J. Andersen, K. Martinsen, Metall. Mater. Trans. A. 43A (2012), 4006-4014.

Google Scholar

[15] K. Teichmann, C.D. Marioara, S.J. Andersen, K. Martinsen, Mater. Char. 75 (2013), 1-7.

Google Scholar

[16] C. Schäfer, O.R. Myhr, Z. Liang, H.J. Brinkman, O. Engler, J. Hirsch, C. Chang, J. Banhart, Proc. 13th International Conference on Aluminium Alloys, TMS, (2012), 325-330.

DOI: 10.1002/9781118495292.ch50

Google Scholar

[17] O.R. Myhr, Ø. Grong, C. Schäfer, An Extended Age Hardening Model for Al-Mg-Si Alloys Incorporating the Room Temperature Storage and Cold Deformation Process Stages. Work in progress.

DOI: 10.1007/s11661-015-3175-y

Google Scholar

[18] O.R. Myhr, Ø. Grong, Acta Mater. 48 (2000), 1605-1615.

Google Scholar

[19] O.R. Myhr, Ø. Grong, S.J. Andersen, Acta Mater. 49 (2001), 65-75.

Google Scholar

[20] O.R. Myhr, Ø. Grong, H.G. Fjær, C.D. Mariorara, Acta Mater. 52 (2004), 4997-5008.

Google Scholar

[21] O.R. Myhr, Ø. Grong, K.O. Pedersen, Metall. Mater. Trans. A. 41A (2010), 2276-2289.

Google Scholar

[22] O.R. Myhr, Ø. Grong, Sci. and Techn. of Weld. and Join. 14 (2009), 621-632.

Google Scholar

[23] J. Johnsen, J.K. Holmen, O.R. Myhr, O.S. Hopperstad, T. Børvik, Comp. Mat. Sci. 79 (2013), 724-735.

Google Scholar