Heat Treatment of Aluminum-Titanium-Compounds Made by Co-Extrusion and Friction Welding

Article Preview

Abstract:

The combination of aluminum and titanium alloys allows for designing lightweight structures with tailor-made properties at the macroscopic global as well as at the microscopic scale. In this context both co-extrusion and friction welding offer a great potential for advanced solutions for products with material combinations of aluminum and titanium. While titanium alloys show particular high mechanical strength and good corrosion resistance, aluminum alloys provide a considerable high specific bending stiffness along with low materials costs. Since the mechanical properties of metallic composites highly depend on the existence and formation of the intermetallic layer in the bonding zone compounds were processed by co-extrusion and friction welding and subsequent heat treatment to investigate the strength and the composition of the bonding zone. The results of friction welded samples concerning the intermetallic layer that was formed during heat treatment were compared with those directly after the co-extrusion. In this layer an enrichment of elements which origin from the aluminum alloy, particularly silicon, was observed. The layer was characterized by optical microscopy, scanning electron microscopy as well as electron probe micro analysis. The mechanical properties were determined by tensile tests.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

839-844

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Wilden, J. P. Bergmann: Möglichkeiten zum Herstellen von Mischverbindungen durch Diffusionsschweißen. Schweißen und Schneiden, 2004, 56 (5), p.199.

Google Scholar

[2] P. G. Partridge, C. M. Ward-Close: Diffusion bonding of advanced materials. Metals and Materials, 1989, 5 (6), p.334.

Google Scholar

[3] J. Hirsch: Walzen von Flachprodukten. Wiley-VCH, Weinheim, (2001).

Google Scholar

[4] M. Schmidtchen, P. Simecek, D. Hadjuk: International Conference on Metal Forming - MEFORM 2004, Freiberg, Deutschland, 2004, pp.81-110.

Google Scholar

[5] J. S. Lee, T. H. Son, C. S. Kang, C. H. Yun, S. C. Lim, H. C. Kwon: Fabrication and characterisation of Ti-Cu clad materials by direct extrusion; Journal of Materials Processing Technology 187-188 (2007), pp.653-656.

DOI: 10.1016/j.jmatprotec.2006.11.144

Google Scholar

[6] J. J. Theler, A. Wagner, A. Ames: Herstellung von Aluminium/ Stahl-Verbundstromschienen mit metallurgischer Bindung zwischen Aluminium und Stahl durch Verbundstrangpressen. Metallwissenschaft und Technik 30 (1976) 3, pp.223-227.

Google Scholar

[7] F. Ostermann: Anwendungstechnologie Aluminium, 2. Auflage, Springer-Verlag, Berlin, (2007).

Google Scholar

[8] A. Fuji, K. Ameyama, T. H. North: Influence of silicon in aluminium on the mechanical properties of titanium/aluminium friction joints. Journal of Materials Science 30 (1995) 5185-5191.

DOI: 10.1007/bf00356068

Google Scholar

[9] A. Fuji, M. Kimura, T. H. North, K. Ameyama, and M. Aki: Mechanical properties of titanium-5083 aluminium alloy friction joints. Materials Science and Technology, August 1997, Vol. 13, pp.673-678.

DOI: 10.1179/mst.1997.13.8.673

Google Scholar

[10] M. Peters, C. Leyens: Titan und Titanlegierungen, WILEY-VCH Verlag, Weinheim, (2002).

Google Scholar

[11] R. Boyer, G. Welsch, E. W. Collings: Materials Properties Handbook: Titanium alloys, Materials Park, Ohio, ASM International, (1994).

Google Scholar

[12] W. Hesse: Aluminium-Werkstoffdatenblätter, 5. Auflage, Aluminium Verlag, Düsseldorf, (2007).

Google Scholar