Selection of the Optimal Distribution for the Upper Bound Theorem in Indentation Processes

Article Preview

Abstract:

It has been established, in previous studies, the best adaptation and solution for the implementation of the modular model, being the current choice based on the minimization of the p/2k dimensionless relation obtained for each one of the model, analyzed under the same boundary conditions and efforts. Among the different cases covered, this paper shows the study for the optimal choice of the geometric distribution of zones. The Upper Bound Theorem (UBT) by its Triangular Rigid Zones (TRZ) consideration, under modular distribution, is applied to indentation processes. To extend the application of the model, cases of different thicknesses are considered

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-122

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. W. Rowe, Conformado de los metales. Urmo, Bilbao, España, (1972).

Google Scholar

[2] H. Kudo, An upper-bound approach to plane-strain forging and extrusion-i, Int. J. Mech. Sci. 1, (1960), 57-83.

Google Scholar

[3] S. Kobayashi, A.G. MacDonald and E.G. Thomsen, Some aspects of press forging, Int. J. Mech. Sci. 1, (1960), 282-300.

Google Scholar

[4] R. Hill, The mathematical theory of plasticity. Oxford University Press Inc, New York, U.S.A., (1998).

Google Scholar

[5] F.J. Olivares, A.M. Camacho and M.A. Sebastian, Analysis of technological factors in open die forging by comparison of different analysis methods, 4th MESIC Proc., (2011).

Google Scholar

[6] R. Domingo, A.M. Camacho, E:M. Rubio and M.A. Sebastian, Mechanical solutions for hot forward extrusion under plane strain conditions by upper bound method, Key Eng. Mater. 367, (2008), 201-208.

DOI: 10.4028/www.scientific.net/kem.367.201

Google Scholar

[7] F. Martín, L. Sevilla, E.M. Rubio and M.A. Sebastian, Bases para la aplicación del teorema del límite superior en procesos de forja sobre configuraciones geométricas modulares, 2th MESIC Proc., (2007), 8-14.

Google Scholar

[8] F. Martín, L. Sevilla and M.A. Sebastian, Implementation of technological and geometrical parameters in forging processes by means of the upper bound element technique, Am. Inst. Phys. Conf. Proc., 1181(1), (2009), 455-463.

DOI: 10.1063/1.3273663

Google Scholar

[9] W.F. Hosford, and R.M. Caddell, Metal forming: Mechanics and metallurgy. Cambridge University Press, New York, U.S.A., (2011).

Google Scholar

[10] C. Bermudo, F. Martín and L. Sevilla, Application of the upper bound element technique with triangular rigid blocks in indentation, Am. Ins. Phys. Conf. Proc. 1431, (2011), 74-88.

DOI: 10.1063/1.4707552

Google Scholar

[11] F. Martín, L. Sevilla and M.A. Sebastian, Optimización de módulos en la aplicación del teorema del límite superior en procesos de forja, Anales de Ingeniería Mecánica, (2010).

DOI: 10.5944/bicim2022.160

Google Scholar

[12] G.E. Dieter, H.A. Kuhn and S.L. Semiatin, Handbook of workability and process design. ASM International. U.S.A., (2003).

Google Scholar

[13] F. Fereshteh-Saniee, I. Pillinger and P. Hartley, Friction modelling for the physical simulation of the bulk metal forming processes, J. Mater. Proc. Tech. 153, (2004), 151-156.

DOI: 10.1016/j.jmatprotec.2004.04.217

Google Scholar