Effect Analysis and ANN Prediction of Surface Roughness in End Milling AISI H13 Steel

Article Preview

Abstract:

Surface roughness has a significant effect on the performance of machined components. In the present study, a total of 49 end milling experiments on AISI H13 steel are conducted. Based on the experimental results, the signal-to-noise (S/N) ratio is employed to study the effects of cutting parameters (axial depth of cut, cutting speed, feed per tooth and radial depth of cut) on surface roughness. An ANN predicting model for surface roughness versus cutting parameters is developed based on the experimental results. The testing results show that the proposed model can be used as a satisfactory prediction for surface roughness.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 800-801)

Pages:

590-595

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.W. Wang, S. Zhang, J.F. Li, et al.: Adv. Mater. Res. Vol. 126 (2010), p.911.

Google Scholar

[2] P.G. Benardos, G.C. Vosniakos: Int. J. Mach. Tool & Manu. Vol. 43 (2003), p.833.

Google Scholar

[3] Z.W. Zhong, L.P. Khoo, S.T. Han: Int. J. Adv. Manu. Tech. Vol. 28 (2006), p.688.

Google Scholar

[4] S. Zhang, J.F. Li: Adv. Mater. Res. Vol. 325 (2011), p.418.

Google Scholar

[5] A.M. Zain, H. Haron, S. Sharif: Exp. Syst. Appl. Vol. 37 (2010), p.1755.

Google Scholar

[6] S. Palani, U. Natarajan: Int. J. Adv. Manu. Tech. Vol. 54 (2011), p.1033.

Google Scholar

[7] H. Öktem: Int. J. Adv. Manu. Tech., Vol. 43 (2009), p.852.

Google Scholar

[8] İ. Asiltürk, M. Çunkaş: Exp. Syst. Appl. Vol. 38 (2011), p.5826.

Google Scholar

[9] I.N. Tansel, B. Ozcelik, W.Y. Bao, et al.: Int. J. Mach. Tool & Manu. Vol. 46 (2006), p.26.

Google Scholar

[10] J.C. Chen, J.C. Chen: Int. J. Adv. Manu. Tech. Vol. 25 (2005), p.427.

Google Scholar