Optimization of the Grinding Parameters for CVD Diamond Micro-Tools

Article Preview

Abstract:

This study is focused on the optimization of the grinding process parameters for the grinding of the CVD diamond micro-milling tool. Two types of CVD diamond i.e. CDM and CDE are used for the study. Feed rate and the grinding velocity are used as the grinding parameters. The optimizations of the parameters are done by studying the two results i.e. grinding force and cutting edge radius. Highest grinding velocity and medium feed rate is found to have the best result for the grinding of the CVD diamond. Keywords: CVD diamond, Grinding, Micro-tool

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 800-801)

Pages:

633-638

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Diamond tool materials for metal working, Element Six.

Google Scholar

[2] Engineers Handbook Manufacturing Processes - Coatings Surface Finishing of CVD.

Google Scholar

[3] www. cvd-diamond. com.

Google Scholar

[4] The properties of CVD diamond, Element Six, (2009).

Google Scholar

[5] Fleischer J, Deuchert M, Ruhs C, et al. (2008) Design and manufacturing of micro milling tools. Microsystem Technology14: 1771-1175.

DOI: 10.1007/s00542-008-0652-x

Google Scholar

[6] Cheng Xiang, Wang Zhigang, Nakamoto Kazuo, etal. (2010) A study on the micro tooling for micro/nano milling. International Journal ofAdvanced Manufacture Technology doi: 10. 1007/s00170-010-2856-3.

Google Scholar

[7] Fonda Peter, Katahira Kazutoshi, Kobayashi Yutaka, Yamazaki Kazuo. WEDM condition parameter optimization for PCD micro tool geometry fabrication process and quality improvement. International Journal of Advanced Manufacture Technology, DOI: 10. 1007/s00170- 012-3977-7.

DOI: 10.1007/s00170-012-3977-7

Google Scholar

[8] David M Baker, Revolution in Diamond Cutting: Laser Sawing of Diamond Crystals.

Google Scholar

[9] Uhlmann E, Schauer K. (2005) Dynamic load and strain analysis for the optimization of micro end mills. Annals of the CIRP 54: 75-78.

DOI: 10.1016/s0007-8506(07)60053-5

Google Scholar

[10] Jin Masahiko, Goto Isamu, Watanabe Takeshi, et al. (2007) Development of cBN ball-nosed end mill with newly designed cutting edge. Journal of Materials Processing Technology 192–193: 48–54.

DOI: 10.1016/j.jmatprotec.2007.04.054

Google Scholar

[11] Mamalis A.G., Horvath M., Grabchenko A.I. (2000) Diamond grinding of super-hard materials. Journal of Materials Processing Technology 97 : 120-125.

DOI: 10.1016/s0924-0136(99)00358-1

Google Scholar

[12] Denkena B., Köhler J., Ventura C.E.H. (2014) Grinding of PCBN cutting inserts. International Journal of Refractory Metals and Hard Materials. 42 : 91–96.

DOI: 10.1016/j.ijrmhm.2013.08.007

Google Scholar

[13] Tzeng C.J., Lin Y.H., Yang Y.K., Jeng M.C. (2009). Optimization of turning operations with multiple performance characteristics using the Taguchi method and Grey relational analysis. Journal of Materials Processing Technology 209 : 53–2759.

DOI: 10.1016/j.jmatprotec.2008.06.046

Google Scholar

[14] Processing Technology 145: 84–92.

Google Scholar

[15] E Uhlmann, K Schauer. Dynamic load and strain analysis for the optimization of micro end mills [J]. Annals of the CIRP, 2005, 54: 75-78.

DOI: 10.1016/s0007-8506(07)60053-5

Google Scholar

[16] F. Z. Fang, H. Wu, X.D. Liu, et al. Tool geometry study in micromachining[J], Journal of micromechanics and microengineering, 2003, 13: 726–731.

DOI: 10.1088/0960-1317/13/5/327

Google Scholar

[17] J Fleischer, M Deuchert, C Ruhs, et al. Design and manufacturing of micro milling tools [J]. Microsystem Technology, 2008, 14: 1771-1175.

DOI: 10.1007/s00542-008-0652-x

Google Scholar

[18] C.D. Torres, P.J. Heaney, A.V. Sumant, M.A. Hamilton, R.W. Carpick, F.E. Pfefferkorn. Analyzing the performance of diamond-coated micro end mills [J]. International Journal of Machine Tools & Manufacture, 2009, 49: 599–612.

DOI: 10.1016/j.ijmachtools.2009.02.001

Google Scholar