Upper Limit for the Coercive Force in NdFeB and PrFeB Magnets

Article Preview

Abstract:

Hysteresis loops were calculated according the Stoner-Wohlfarth model. Using as values for constants of magnetocrystalline anisotropy K1 =4.5 and K2=0.66 (J m3), and 1.61 T for magnetization of saturation of Nd2Fe14B, the maximum coercivity for isotropic Nd2Fe14B was predicted as mi0 H = 2.95 T (29.5kOe). For a very well aligned magnet, with Mr/Ms=0.96, following the f (alpha)=cosn(alpha) distribution, the theoretical coercivity limit was estimated as mi0 H = 3.6 T (36 kOe). These estimates are valid for the ternary Nd2Fe14B alloy. It is predicted the upper limit for the coercive field as function of grain size for NdFeB and PrFeB magnets. Addition of Praseodymium is an effective method for increasing coercivity of NdFeB magnets.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

596-600

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.F. Herbst: Reviews of Modern Physics Vol. 63 (1991), p.819.

Google Scholar

[2] E.C. Stoner and E.P. Wohlfarth: IEEE Trans. Magn. Vol. 27 (1991), p.3475.

Google Scholar

[3] Ching Ray Chang. J. Appl. Phys. Vol. 69 (1991), p.2431.

Google Scholar

[4] F.A. Sampaio da Silva, N.A. Castro, M.F. de Campos: Journal of Magnetism and Magnetic Materials Vol. 328 (2013), p.53.

Google Scholar

[5] M.F. de Campos, F.A. Sampaio da Silva, E.A. Perigo, J.A. de Castro: Journal of Magnetism and Magnetic Materials Vol. 345 (2013), p.147.

DOI: 10.1016/j.jmmm.2013.06.028

Google Scholar

[6] M.F. de Campos, F.A.S. da Silva, J.A. de Castro: Mater. Sci. Forum Vol. 775–776 (2014), p.431.

Google Scholar

[7] F.A.S. da Silva, M.F. de Campos: Mater. Sci. Forum Vol. 727–728 (2012), p.119.

Google Scholar

[8] M.F. de Campos: Mater. Sci. Forum Vol. 775–776 (2014), p.437.

Google Scholar

[9] M.F. de Campos: Materials Science Forum Vol. 660-661 (2010), p.284.

Google Scholar

[10] M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, S. Hirosawa: J. Appl. Phys. Vol. 57 (1985), p.4094.

Google Scholar

[11] E. Girt, K. M. Krishnan, G. Thomas, and Z. Altounian: Appl. Phys. Letters Vol. 76 (2000), p.1746.

Google Scholar

[12] E. Girt, K. M. Krishnan, G. Thomas, Z. Altounian, and M. Dikeakos: Journal of Applied Physics Vol. 88 (2000), p.5311.

DOI: 10.1063/1.1313782

Google Scholar

[13] E. Girt, K.M. Krishnan, G. Thomas, E. Girt, Z. Altounian: Journal of Magnetism and Magnetic Materials Vol. 231 (2001), p.219.

DOI: 10.1016/s0304-8853(01)00031-2

Google Scholar

[14] W. Szmaja: Journal of Magnetism and Magnetic Materials Vol. 301 (2006), p.546.

Google Scholar

[15] R. Szymczak, E. Burzo, W.E. Wallace: Journal de Physique 46 (1985), p.309.

Google Scholar

[16] M.F. de Campos, J.A. de Castro: Materials Science Forum 660-661 (2010), p.279.

Google Scholar

[17] J.E. Coleman, R. Carey: J. Phys. D: Appl. Phys. Vol. 15 (1982), p.473.

Google Scholar

[18] W.B. Cui, Y.K. Takahashi, K. Hono: Acta Mater. Vol. 59 (2011), p.7768.

Google Scholar

[19] G Marusi, NV Mushnikov, L Pareti, M Solzi and AE Ermakov: J. Phys. Condens. Matter Vol. 2 (1990), p.7317.

Google Scholar

[20] R. Ramesh, G. Thomas, B.M. Ma: J. Appl. Phys. Vol. 64 (1988), p.6416.

Google Scholar