Modeling the Neodymium Metallic Reduction from Molten Salts

Article Preview

Abstract:

A model for simulating the reduction of metallic neodymium from molten salts is presented. The model was formulated with basis on the Navier-Stokes equations coupled with the Maxwell's relations. The model is useful for predicting optimum parameters of processing, as for example cell geometry and current density.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

607-612

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zhanheng Chen: Journal of Rare Earths Vol. 29 (2011), p.1.

Google Scholar

[2] S. Moutinho: Ciência Hoje Vol. 52 (2013), pp.22-17. http: /cienciahoje. uol. com. br/revista-ch/2013/310/pdf_aberto/terrasraras. pdf.

Google Scholar

[3] O.A. Serra: J. Braz. Chem. Soc. Vol. 22 (2011), p.811.

Google Scholar

[4] M.Z. Jacobson and M.A. Delucchi: Energy Policy Vol. 39 (2011) p.1154.

Google Scholar

[5] M. Simas, S. Pacca: Renewable and Sustainable Energy Reviews Vol. 31 (2014), p.83.

Google Scholar

[6] A. Jordens, Ying Ping Cheng, K.E. Waters: Minerals Engineering Vol. 41(2013), p.97.

Google Scholar

[7] Yan Chunhu, Jia Jiangtao , Liao Chunsheng, Wu Sheng, Xu Guangxian: Tsinghua Science And Technology. Vol. 11 (2006), p.241. http: /qhxb. lib. tsinghua. edu. cn/myweb/english/2006/2006e2/241-247. pdf.

DOI: 10.1016/s1007-0214(06)70183-3

Google Scholar

[8] D. Kennedy. In: StrategischeRohstoffe — Risikovorsorge. Springer Spektrum, Berlin (2014), p.201.

Google Scholar

[9] A.R. Johnson: JOM Vol. 40 (10) (1988), p.11.

Google Scholar

[10] Geoff Bearne, Marc Dupuis and Gary Tarcy: Essential Readings in Light Metals Aluminum Reduction Technology (Wiley-TMS; New Jersey USA, Vol. 2 2013).

DOI: 10.1002/9781118647851

Google Scholar

[11] H. Zhang, C.Q. Zhou, B. Wu and Jie Li: JOM Vol. 65 (2013), p.1452.

Google Scholar

[12] H. Zhang, Jie Li, Zhigang Wang, Yujie Xu, and Yanqing Lai: JOM Vol. 62 (2010), p.26.

Google Scholar

[13] J.F. Gerbeau, C. Le Bris and T. Lelièvre: Mathematical Methods for the Magnetohydrodynamics (Oxford Science Publications, 2006).

Google Scholar

[14] E. Morrice, T.A. Henrie: Electrowinning high-purity neodymium, praseodymium, and didymium metals from their oxides [Washington, D.C. ] U.S. Dept. of the Interior, Bureau of Mines, (1967).

Google Scholar

[15] E. Morrice, E.S. Shedd, and T.A. Henrie: Direct electrolysis of rare-earth oxides to metals and alloys in fluoride melts [Washington, D.C. ] U.S. Dept. of the Interior, Bureau of Mines, (1968).

Google Scholar

[16] N. Krishnamurthy, C.K. Gupta: Extractive Metallurgy of Rare Earths. (CRC Press Boca 1st edition Raton Florida, 2004).

Google Scholar

[17] S. Singh, J. M. Juneja, D.K. Bose: Journal of Applied Electrochemistry Vol. 25 (1995), p.1139.

Google Scholar

[18] M. Earlam: Metallurgical Transactions B Vol. 21 (1990), p.599.

Google Scholar

[19] R. Keller and K.T. Larimer: US department of Energy, Internal Report (1997), pp.1-62.

Google Scholar

[20] J. Zoric, I. Rousiar, J. Thonstad and T. Haarberg: Journal of applied Electrochemistry Vol. 27 (1997), p.928.

DOI: 10.1023/a:1018401602274

Google Scholar

[21] R.A. Sharma: JOM Journal of Metals Vol. 39 (2) (1987), p.33.

Google Scholar

[22] M.C. Melaaen: Numerical Heat Transfer Vol 21 part B (1992), p.1.

Google Scholar

[23] K.C. Karki, S.V. Patankar: Numerical Heat Transfer Vol. 14 (1988), p.295.

Google Scholar