Experimental Methodology for Limit Strain Determination in a Carbon/Epoxy Composite under Tensile Fatigue Loading

Article Preview

Abstract:

This work proposes a methodology to obtain the carbon fiber/epoxy composite limit strain for structures surviving 120000 cycles. The damage progression was also evaluated using stiffness reduction and hysteresis loop analysis in order to obtain dynamic and secant modulus. The results provide information about composite fatigue behavior. This approach determined a limit strain range from 0.83 to 0.87%, a fatigue stress limit of 0.8% of the static strength, stiffness degradation (damage index) of about 5% (within the limit strain). The methodology presented herein may be used for determining of material design allowable when fatigue is key consideration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

311-318

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Subramanian, K.L. Reifsnider and W.W. Stinchcomb: International Journal of Fatigue Vol. 17 (1995), p.343.

Google Scholar

[2] A.R. Chambers, J.S. Earl, C.A. Squires and M.A. Suhot: International Journal of Fatigue Vol. 28 (2006), p.1389.

Google Scholar

[3] M.J. Salkind, Fatigue of Composites. Composite Materials: Testing and Design (Second Conference). s. l.: American Society for Testing and Materials, 1972, 143-169.

DOI: 10.1520/stp27745s

Google Scholar

[4] P.T. Curtis and B.B. Moore, A Comparison of the Fatigue Performance of Woven and Non-woven CFRP Laminates. London : Royal Aircraft Establishement, 1985. Technical Report 85059.

Google Scholar

[5] B. Harris: Fatigue in Composites. Boca Raton, Florida USA : CRC Press LLC, (2003).

Google Scholar

[6] C. Bathias: International Journal of Fatigue Vol. 28 (2006), p.1094.

Google Scholar

[7] J.E. Lindhagen and L.A. Berglund: Journal of Materials Science Vol. 32 (1997), p.4071.

Google Scholar

[8] L. Toubal, M. Karama and B. Lorrain: International Journal of Fatigue Vol. 28 (2006), p.1867.

Google Scholar

[9] H.T. Hahn, J. Bartley-Cho and S.G. Lim, The Effect of Loading Parameters on Fatigue of Composite Laminates: Part II. U.S. Department of Transportation, Federal Aviation Administration. 1997. DOT/FAA/AR-96/76.

Google Scholar

[10] G. Pinter, E. Ladstatter, W. Billinger and R.W. Langer: International Journal of Fatigue Vol. 28 (2006), p.1277.

Google Scholar

[11] V. Barron, M. Buggy and N. H. Mckenna: Journal of Materials Science Vol. 36 (2001), p.1755.

Google Scholar

[12] G. Minak: Journal of Composite Materials Vol. 44 (2010), p.1739.

Google Scholar

[13] R. Steinberger, T.I. Valadas Leitão, E. Ladstatter, G. Pinter,W. Billinger and R.W. Lang: International Journal of Fatigue Vol. 28 (2006), p.1340.

Google Scholar

[14] Hexcel Composites. Material Data Sheet - F584. Duxford, UK: s. n., (1998).

Google Scholar

[15] Department Of Defense - U.S.A. Composite Materials Handbook. 1997. Vol. 1. MIL-HDBK-17-1F.

Google Scholar

[16] H. T. Hahn, J. L. Timmer, J. Bartley-Cho, S. Lee, S. Lim, The Effect of Preloading on Fatigue Damage in Composite Structures: Part I. U.S. Department of Transportation, Federal Aviation Administration. Washington, D.C. : s. n., 1996. pp.1-36.

Google Scholar

[17] H. Mao and S. Mahadevan: Composite Structures Vol. 58 (2002), p.405.

Google Scholar

[18] F. Gao, L. Boniface, S.L. Ogin, P.A. Smith and R.P. Greaves: Composites Science and Technology Vol. 59 (1999), p.123.

Google Scholar

[19] T.F. Tan and C.K.H. Dharan: Journal of Composite Materials. 2010 INTERNET.

Google Scholar

[20] F. Wu and W. Yao: International Journal of Fatigue Vol. 32 (2010), p.134.

Google Scholar

[21] C. Li, F. E. Ellyin and A. Wharmby: Composites: Part B Vol. 34 (2003), p.473.

Google Scholar