Montmorillonite Silver Nanoparticles for Applications in Polymeric Materials

Article Preview

Abstract:

This work presents the preparation of silver nanoparticles (AgNPs) with montmorillonite to produce a nanomaterial with bactericidal properties. The modified montmorillonite was characterized through the techniques of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray diffraction (XRD). The FTIR and Raman spectrum’s showed specific bands of involving stretching silver. In the XRD analyses was observed the occurrence of the following crystallographic planes (111), (200) e (220) silver related. The nanocomposites of polyethylene with AgNPs did not show loss in mechanical properties, this fact was important and indicate that the nanomaterial can be inserted in this polymer matrix with considerable technological interest.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

627-631

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.N. Lewis: Chem. Rev. Vol. 93 (1993), p.2693.

Google Scholar

[2] H. Huang and Y. Yang: Compos. Sci. Technol. Vol. 68 (2008), p.2948.

Google Scholar

[3] T.N. Kim, Q.L. Feng, J.O. Kim, J. Wu, H. Wang, G.C. Chen and F.Z. Cui: J. Mater. Sci-Mater. M. Vol. 9 (3) (1998), p.129.

Google Scholar

[4] A.B. Lansdown: J. Wound Care Vol. 11 (4) (2002), p.125.

Google Scholar

[5] K.V. Sharma, R.A. Yngard and Y. Lin: Adv. Colloid. Interfac. Vol. 145 (2009), p.83.

Google Scholar

[6] Y. He, X. Wu, G. Lu and G. Shi: Mater. Chem. Phys. Vol. 98 (2006), p.178.

Google Scholar

[7] M.M.S. Paula, C.V. Franco, M.C. Baldin, L. Rodrigues, T. Barichello, G.D. Savi, L.F. Bellato, M.A. Fiori and L. Silva: Mat. Sci. Eng. C Vol. 29 (2009), p.647.

DOI: 10.1016/j.msec.2008.11.017

Google Scholar

[8] S.T. Dubas, P. Kumlangdudsana and P. Potiyaraj: Colloid Surface A Vol. 289 (2006), p.105.

Google Scholar

[9] N. Zhou, Y. Liu, L. Li, N. Meng, Y. Huang, J. Zhang, S. Wei and J. Shen: Curr. Appl. Phys. Vol. 7 (2007), p. e58.

Google Scholar

[10] R.D. Monteiro, L.F. Gorup, A.S. Takamiya, A.C. Ruvollo-Filho, E.R. Camargo and D.B. Barbosa: Int. J. Antimicrob. Vol. 34 (2009), p.103.

Google Scholar

[11] X.D. Ma, X.F. Qian, J. Yin and Z.K. Zhu: J. Mater. Chem. Vol. 12 (2002), 663.

Google Scholar

[12] E.I. Suvorona, V.V. Klechkovskaya, V.V. Kopeikin and P.A. Buffat: J. Cryst. Growth Vol. 275 (2005), p. e2351.

Google Scholar

[13] M. Kim, J.W. Byun, D.S. Shin and Y.S. Lee: Mater. Res. Bull. Vol. 44 (2009), p.334.

Google Scholar

[14] S.S. Ray and M. Okamoto: Prog. Polym. Sci. Vol. 28 (2003), p.1539.

Google Scholar

[15] H. Qin, Q. Su, S. Zhang, B. Zhao and M. Yang: Polymer Vol. 44 (24) (2003), p.7533.

Google Scholar

[16] K. Saminathan, P. Selvakumar and N. Bhatnagar: Polym. Test. Vol. 27(3) (2008), p.296.

Google Scholar

[17] P. Praus, M. Turicová and M. Valasková: J. Braz. Chem. Soc. Vol. 19(3) (2008), p.549.

Google Scholar

[18] G. Upender, R. Sathyavathi, B. Raju, C. Bansal and D.R. Narayana: J. Mol. Struct. Vol. 1012 (2012), p.56.

Google Scholar

[19] D.L.A. Faria, M.L.A. Temperini and O. Sala: Quím. Nova Vol. 22 (4) (1999), p.541.

Google Scholar