[1]
Gianetto et al: Zeolitas: Características, Propriedades y Aplicaciones Industriales. (Ediciones Innovación Tecnológica 2ª ed. Caracas, 2000).
Google Scholar
[2]
I. Salla., T. Montanari, G. Busca, Adsorption of CO on LTA zeolite adsorbents: An IR investigation. Microporous and Mesoporous Materials 109 (2007) 216–222.
DOI: 10.1016/j.micromeso.2007.04.045
Google Scholar
[3]
C. Wang, J. Li, X. Sun, L. Wang, X. Sun, Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals. Journal of Environmental Sciences v. 21 (2009) 127–136.
DOI: 10.1016/s1001-0742(09)60022-x
Google Scholar
[4]
V. Rakic, L. Damjanovic, V. Rac, D. Stosic, V. Dondur, A. Auroux, The adsorption of nicotine from aqueous solutions on different zeolite structures, Water research 44 (2010) 2047–(2057).
DOI: 10.1016/j.watres.2009.12.019
Google Scholar
[5]
M. Hamidpour, M. Afyuni, M. Kalbasi, A. H. Khoshgoftarmanes, V. J. Inglezakis, Mobility and plant-availability of Cd(II) and Pb(II) adsorbed on zeolite and bentonita, Applied Clay Science, 48 (2010) 342–348.
DOI: 10.1016/j.clay.2010.01.004
Google Scholar
[6]
L. Peiyuan, F. Handan, Adsorption separation of N2, O2, CO2 and CH4 gases by β-zeólita, Original Research Article Microporous and Mesoporous Materials 98 (2007) 94 – 101.
DOI: 10.1016/j.micromeso.2006.08.016
Google Scholar
[7]
G. Marianne, M. Jérôme, M. Samuel, M. Patrick, Adsorption of tetrachloroethylene (PCE) in gas phase on zeolites of faujasite type: Influence of water vapour and of Si/Al ratio, Original Research Article Microporous and Mesoporous Materials 111 (2008).
DOI: 10.1016/j.micromeso.2007.08.035
Google Scholar
[8]
L. R. Mario, Accurate correlation, structural interpretation, and thermochemistry of equilibrium adsorption isotherms of carbon dioxide in zeolite NaX by means of the GSTA model, Original Research Article Fluid Phase Equilibria 293 (2010) 225-236.
DOI: 10.1016/j.fluid.2010.03.013
Google Scholar
[9]
S. Cavenati, C. A. Grande, A. E. Rodrigues, Adsorption Equilibrium of Methane, Carbon Dioxide and Nitrogen on Zeolite 13X at High Pressures, J Chem Eng Data 49 (2004) 1095-1101.
DOI: 10.1021/je0498917
Google Scholar
[10]
K. Murata, K. Kaneko, Nano-range interfacial layer upon high-pressure adsorption of supercritical gases, Chem. Phys. Letters 321(2000) 342-348.
DOI: 10.1016/s0009-2614(00)00367-5
Google Scholar
[11]
K. Murata, J. Miyawaki, K. Kaneko, A simple determination method of the absolute adsorbed amount for high pressure gas adsorption, Carbon 40 (2002) 425- 428.
DOI: 10.1016/s0008-6223(01)00126-9
Google Scholar
[12]
Y. Honghong, D. Hua, T. Xiaolong, Y. Qiongfen, Z. Xuan, L. Haiyan, Adsorption equilibrium and kinetics for SO2, NO, CO2 on zeolites FAU and LTA, J. Hazadours Materials 111 (2012) 203-204.
DOI: 10.1016/j.jhazmat.2011.11.091
Google Scholar
[13]
S. Sircar, M. B. Rao, T. C. Golden, Fractionation of air by zeólitas, Studies in Surface Science and Catalysis 120 (1999) 395-423.
Google Scholar
[14]
R. T. Yang, Gas separation by adsorption processes, Boston: Butterworths Publishers, 1987, 352 p.
Google Scholar
[15]
W. M. Ackley, S. U. Rege, H. Saxena, Application of natural zeolites in the purification and separation of gases, Microporous and Mesoporous Materials 61 (2003) 25-42.
DOI: 10.1016/s1387-1811(03)00353-6
Google Scholar
[16]
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14903: gás natural: Determinação da composição por cromatografia gasosa. Rio de Janeiro, (2002).
Google Scholar
[17]
C. J. Geankoplis, Transport processes and separation process principles: (includes unit operations). 4. ed. Upper Saddle River, NJ: Prentice Hall Professional Technical Reference, 2003. 1052 p.
Google Scholar