Machining of WC-Co Composites - A Review

Article Preview

Abstract:

This article aims to present a review on the machining of tungsten carbide-cobalt composite material. WC-Co based materials are extensively used where the demand for high performance materials exists because these have the distinguished set of properties such as high hardness, superior wear resistance, high mechanical strength and good dimensional stability. Due to these excellent properties, it serves most applications in the field of tool and die making. Machining of the WC-Co materials is very difficult with conventional machining processes and results in poor surface finish, low material removal rate, high machining cost. Among all non-conventional machining processes, thermal energy based processes such as Electrical discharge machining, Wire EDM are most widely used to machine these materials. The machining of WC-Co is also affected by various factors such as the cobalt content and grain size and presence of other carbides. This paper attempts to critically review all these aspects of the machining of WC-CO composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-64

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.M. Zerman, A to Z of Powder Metallurgy, Elsevier Book, (2005).

Google Scholar

[2] Publication H-9100B- ENG, Understanding cemented carbide, Sandvik Hard material, Sweden.

Google Scholar

[3] K. Jangra, S. Grover, F.T.S. Chan and A. Aggarwal, Diagraph and matrix method to evaluate the machinability of tungsten carbide composite with wire EDM, International journal advanced manufacturing 56 2011 959-974.

DOI: 10.1007/s00170-011-3234-5

Google Scholar

[4] W.D. Schubert, E. Lassner and W. Bohlke, Cemented Carbides- A success story, Heathfield Terrace, London, (2010).

Google Scholar

[5] G.S. Upadhyaya, Cemented Tungsten Carbides. Production, Properties, and Testing, Westwood, NJ: Noyes Publication, (1998).

Google Scholar

[6] T.R. Shearer, The Designer's Guide to tungsten carbide, General Carbide, Greenburg, (2008).

Google Scholar

[7] G. S Upadhyaya, Material Science of Cemented carbide-an overview, Material and Design 22 2001 483-489.

Google Scholar

[8] V. Chandrasekaran, D. Kanagarajan and R. Karthikeyan, Optimization of EDM characteristics of WC/5ni composites using response surface methodology, International journal of recent technology and engineering 2 2013 108-115.

Google Scholar

[9] B. Lauwers, W. Liu and W. Eeraerts, Influence of the composition of WC-based cermets on the manufacturability by wire-EDM, Journal of manufacturing process 8(2) 2006 83-89.

DOI: 10.1016/s1526-6125(07)00007-2

Google Scholar

[10] H.S. Tak, C.S. Ha, D.H. Kim, H.J. Lee, H.J. Lee and M.C. Kang, Comparative study on discharge conditions in micro-hole electrical discharge machining of tungsten carbide (WC–Co) material, Transactions of Non ferrous Metals Society of China 19 (2009).

DOI: 10.1016/s1003-6326(10)60257-9

Google Scholar

[11] F.L. Amorim, W.L. Weingaertner and I.A. Bassani, Aspects on the optimization of die-sinking EDM of tungsten carbide-cobalt, Journal of the Brazil Society of mechanical science & engineering 32 2010 496-502.

DOI: 10.1590/s1678-58782010000500009

Google Scholar

[12] P. Janmanee and A. Muttamara, Performance of difference electrode materials in electrical discharge machining of tungsten carbide, Energy Research Journal 1 2010 87–90.

DOI: 10.3844/erjsp.2010.87.90

Google Scholar

[13] K.Y. Kung, J.T. Horng and K.T. Chiang, Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide, International Journal of Advanced Manufacturing Technology 40 2009 95–104.

DOI: 10.1007/s00170-007-1307-2

Google Scholar

[14] K.Y. Song, D.K. Chung, M.S. Park and C.N. Chu, Water spray electrical discharge drilling of WC-Co to prevent electrolyte corrosion, International journal of precision engineering and manufacturing 13 2012 1117-1123.

DOI: 10.1007/s12541-012-0147-7

Google Scholar

[15] P. Janmanee and A. Muttamara, optimization of electrical discharge machining of composite 90WC-10Co base on taguchi approach, European Journal of Scientific Research 64 2011 426-436.

Google Scholar

[16] G.N. Levy and R. Wertheim, EDM-machining of sintered carbide compacting dies, Annals of the CIRP 37 1988 175–178.

DOI: 10.1016/s0007-8506(07)61612-6

Google Scholar

[17] K. Bonny, P. De Baets, J. Vleugels, O. Van der Biest, B. Lauwers and W. Liu, EDM machinabilty and dry sliding friction of WC-Co cemented carbides, International Journal of manufacturing Research 4 2009 375-394.

DOI: 10.1504/ijmr.2009.028536

Google Scholar

[18] I. Puertas, C.J. Luis and L. Alvarez, Analysis of the influence of EDM parameters on surface quality, MRR and EW of WC–Co, Journal of Material Processing Technology 153-154 2004 1026–1032.

DOI: 10.1016/j.jmatprotec.2004.04.346

Google Scholar

[19] R.A. Mahdavinejad and A. Mahdavinejad, ED machining of WC–Co, Journal of Materials Processing Technology 162–163 2005 637–643.

DOI: 10.1016/j.jmatprotec.2005.02.211

Google Scholar

[20] V. Muthuraman and R. Ramakrishnan, Multi parametric optimization of WC-Co composites using desirability approach, Procedia engineering 38 2012 3381-3390.

DOI: 10.1016/j.proeng.2012.06.391

Google Scholar

[21] P.C. Pandey and S.T. Jilani, Electrical machining characteristics of cemented carbides, Wear 116 1987 77–88.

DOI: 10.1016/0043-1648(87)90269-9

Google Scholar

[22] K. Jangra, S. Grover and A. Aggarwal, Optimization of multi machining characteristics in WEDM of WC-5. 3%Co composite using integrated approach of taguchi, GRA and entropy method, Frontier in mechanical engineering 7(3) 2012 288-299.

DOI: 10.1007/s11465-012-0333-4

Google Scholar

[23] K. Jangra and S. Grover, Modelling and experimental investigation of process parameters in WEDM of WC-5. 3%Co using response surface methodology, Mechanical Sciences 3 2012 63-72.

DOI: 10.5194/ms-3-63-2012

Google Scholar

[24] P. Saha, A. Singha, S.K. Pal and P. Saha, Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite, International journal of advanced manufacturing technology 39 2008 74-84.

DOI: 10.1007/s00170-007-1200-z

Google Scholar

[25] C.H. Kim and J.P. Kruth, Influence of the electrical conductivity of dielectric fluid on WEDM of sintered carbide, KSME International Journal, 15 (12) (2001) 1676-1682.

DOI: 10.1007/bf03185122

Google Scholar

[26] P. Saha, P. Saha and S.K. Pal, Parametric optimization in WEDM of WC-Co composite by neuro-genetic technique, Proceedings of the world congress on engineering III, London (2011).

Google Scholar

[27] Y.S. Sable, R.B. Patil and M.S. Kadam, Investigation of MRR in WEDM for WC-Co sintered composite, International journal of mechanical engineering and technology 3 2013 349-358.

Google Scholar

[28] B.H. Yan, F.Y. Huang, H.M. Chow and J.Y. Tsai, Micro-hole machining of carbide by electrical discharge machining, Journals of Materials Processing Technology 87 1999 139–145.

DOI: 10.1016/s0924-0136(98)00345-8

Google Scholar

[29] Y.C. Lin, Y.F. Chen, C.T. Lin and H.J. Tzeng, Electrical discharge machining (EDM) characteristics associated with electrical discharge energy on machining of cemented tungsten carbide, Materials and Manufacturing Processes 23: 4 (2008) 391-399.

DOI: 10.1080/10426910801938577

Google Scholar

[30] S. Assarzadeh and M. Ghoreishi, Statistical modeling and optimization of process parameters in electro-discharge machining of cobalt-bonded tungsten carbide composite (WC/6%Co), Procedia CIRP 6 2013 464-469.

DOI: 10.1016/j.procir.2013.03.099

Google Scholar

[31] K. Jangra, S. Grover and A. Aggarwal, Simultaneous optimization of material removal rate and surface roughness for WEDM of WC-Co composite using grey relational analysis along with taguchi method, International journal of industrial engineering computations 2 2011 479-490.

DOI: 10.5267/j.ijiec.2011.04.005

Google Scholar

[32] K. Jangra and S. Grover, Modelling for machining speed in WEDM of WC-5. 3%Co composite using response surface methodology, Proceedings of the National Confrence on Trends and Advances in mechanical engineering 2012 443-448.

DOI: 10.5194/ms-3-63-2012

Google Scholar

[33] A. Shah, N.A. Mufti, D. Rakwal andE. Bamberg, Material removal rate, kerf, and surface roughness of tungsten carbide machined with wire electrical discharge machining 20 2012 71-76.

DOI: 10.1007/s11665-010-9644-y

Google Scholar

[34] G.K. Singh, V. Yadava and R. Kumar, Diamond face grinding of WC-Co composite with spark assistance: Experimental study and parameter optimization, International journal of precision engineering and manufacturing 11 2010 509-518.

DOI: 10.1007/s12541-010-0059-3

Google Scholar

[35] A.T.Z. Mahamat, A.M.A. Rani and P. Husain, Machining of cemented tungsten carbide using EDM, journal of applied sciences 11(10) 2011 1784-1790.

DOI: 10.3923/jas.2011.1784.1790

Google Scholar

[36] Y.S. Sable, R.B. Patil and M.S. Kadam, Mathematical modeling and analysis of machining parameters in WEDM for WC-10%Co sintered composite, International journal of scientific & engineering research 4 2013 811-816.

Google Scholar

[37] E. Lenz, W. Koenig, R. Wertheim and E. Katz, Cracking behaviour of sintered carbides during EDM, Annals of the CIRP 24 1975 109–114.

Google Scholar

[38] A.M. Gadalla andW. Tsai, Machining of WC–Co composites, Materials and Manufacturing Processes 4 1989 411–423.

DOI: 10.1080/10426918908956301

Google Scholar

[39] Y.C. Lin, L.R. Hwang, C.H. Cheng and P.L. Su, Effects of electrical discharge energy on machining performance and bending strength of cemented tungsten carbides, Journal of Materials Processing Technology 206 (2008) 491–499.

DOI: 10.1016/j.jmatprotec.2007.12.056

Google Scholar

[40] M.P. Jahan, Y.S. Wong and M. Rahman, A comparative experimental investigation of deep hole micro-EDM drilling capability forcemented carbide (WC–Co) against austenitic stainless steel (SUS304), International Journal of Advanced Manufacturing Technology 46 2010 1145–1160.

DOI: 10.1007/s00170-009-2167-8

Google Scholar

[41] A.M. Gadalla and W. Tsai, Electrical discharge machining of tungsten carbide cobalt composites, Journal of American Ceramic Society 72 1989 1396–1401.

DOI: 10.1111/j.1151-2916.1989.tb07660.x

Google Scholar

[42] M.A. Hassan, H. Musa, S. Sharif, D. Rosdi and S. H. Tomadi, Surface integrity study in WEDM of tungsten carbide, Solid State Science and Technology, 16 (1) (2008), 1-11.

Google Scholar

[43] N.M. Liu, K.T. Chiang, J.T. Horng and C.C. Chen, Modeling and analysis of the edge disintegration in the EDM drilling cobalt-bonded tungsten carbide, International journal of advanced manufacturing technology 51 2010 587-598.

DOI: 10.1007/s00170-010-2629-z

Google Scholar

[44] A. Abdullah and M.R. Shabgard, Effect of ultrasonic vibration of tool on electrical discharge machining of cemented tungsten carbide (WC-Co), International journal of advanced manufacturing and technology 38 2008 1137-1147.

DOI: 10.1007/s00170-007-1168-8

Google Scholar

[45] A. Abdullah, M.R. Shabgard, A. Ivanov and M.T.S. Tabar, Effect of ultrasonic-assisted EDM on the surface integrity of cemented tungsten carbide (WC-Co), International journal of advanced manufacturing and technology 41 2009 268-280.

DOI: 10.1007/s00170-008-1476-7

Google Scholar

[46] M.G. Xu, J.H. Zhang, Y. Li, Q.H. Zhang and S.F. Ren, Material removal mechanisms of cemented carbides machined by ultrasonic vibration assisted EDM in gas medium, Journal of Materials Processing Technology 209 2009 1742–1746.

DOI: 10.1016/j.jmatprotec.2008.04.031

Google Scholar

[47] M.P. Jahan, T. Saleh, M. Rahman and Y.S. Wong, Development, modeling and experimental investigation of low frequency workpiece vibration assisted micro-EDM of tungsten carbide, Transactions of the ASME: Journal of Manufacturing Science and Engineering 132 2010 1-8.

DOI: 10.1115/1.4002457

Google Scholar

[48] P. Koshy, V.K. Jain and G.K. Lal, Grinding of cemented carbide with electrical spark assistance, Journal of materials processing technology 72 1997 61-68.

DOI: 10.1016/s0924-0136(97)00130-1

Google Scholar

[49] M.P. Jahan, Y.S. Wong and M. Rahman, Effect of non-electrical and gap control parameters in the micro-EDM of WC–Co, Journal of Machining & Forming Technologies, Nova Science (USA) 1–2 2009 51–78.

Google Scholar

[50] S.S. Gill, J. Singh, H. Singh and R. Singh, Metallurgical and mechanical characteristics of cryogenically treated tungsten carbide (WC-Co), International journal of advanced manufacturing and technology 58 2012 119-131.

DOI: 10.1007/s00170-011-3369-4

Google Scholar