[1]
A. Rosochwski and A. Matuszak, Rapid tooling: the state of the art, Journal of Materials Processing Technology 106 2000 191-98.
Google Scholar
[2]
M. Nikzad, S.H. Masood and I. Sbarski, Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modelling, Materials and Design 32 2011 3448-3458.
DOI: 10.1016/j.matdes.2011.01.056
Google Scholar
[3]
P.Y. Greenbaum and S. Khan, Direct investment casting of rapid prototype parts: practical commercial experience", Proceedings of 2nd European Conference on Rapid Prototyping, Nottingham, UK, July 15-16 1993 77-93.
Google Scholar
[4]
P.M. Dickens, R. Stangroom, M. Greul, B. Holmer, K.K.B. Hon, R. Hovtun, R. Neumann, S. Noeken and D. Wimpenny, Conversion of RP models to investment casting, Rapid Prototyping Journal 1 1995 4-11.
DOI: 10.1108/13552549510104401
Google Scholar
[5]
C.W. Lee, C.K. Chua, C.M. Cheah, L.H. Tan and C. Feng, Rapid investment casting: direct and indirect approaches via fused deposition modelling, The International Journal of Advanced Manufacturing Technology 23 2004 93-101.
DOI: 10.1007/s00170-003-1694-y
Google Scholar
[6]
C. Gouldsen and P. Blake, Investment casting using FDM ABS rapid prototype patterns, Information available on [12 June 2011] at: http: /www. ditra. biz/pls/htmldb/TL_PORTAL. tl_portal_utils. download_doc?p_file_id=81. (1998).
Google Scholar
[7]
M.C. Warner, Metal rapid prototyping methods and case studies for metal casting and tooling, Rapid News 2 1997 1-5.
Google Scholar
[8]
B. Sushila, K. Karthik and P. Radhakrishnan, Rapid tooling for casting- a case study on application of rapid prototyping processes, Indian Foundry Journal 45 1999 213-16.
Google Scholar
[9]
C.K. Chua, C. Feng, C.W. Lee and G.Q. Ang, Rapid investment casting: direct and indirect approaches via model maker II, The International Journal of Advanced Manufacturing Technology 25 2005 26-32.
DOI: 10.1007/s00170-004-1865-5
Google Scholar
[10]
D. Ahn, J.H. Kweon, S. Kwon, J. Song and S. Lee, Representation of surface roughness in fused deposition modeling, Journal of Materials Processing Technology 209 2009 5593-5600.
DOI: 10.1016/j.jmatprotec.2009.05.016
Google Scholar
[11]
E. Grenda, Castle islands worldwide guide to rapid prototyping, available at: http: /home. att. net/~ castleisland/home. htm (2009).
Google Scholar
[12]
A. Garg, A fuzzy Taguchi approach for improving dimensional accuracy of fused deposition modeling (FDM) built parts, B. Tech. Thesis, Department of Mechanical Engineering, NIT, Rourkela, India (2005).
Google Scholar
[13]
K. Thrimurthulu, P.M. Pandey and N.V. Reddy, Optimum part deposition orientation in fused deposition modeling, International Journal of Machine Tools and Manufacture 44 2004 585-594.
DOI: 10.1016/j.ijmachtools.2003.12.004
Google Scholar
[14]
R. Singh, Effect of moulding sand on statistically controlled hybrid rapid casting solution for zinc alloys, Journal of Mechanical Science and Technology 24 2010 1689-95.
DOI: 10.1007/s12206-010-0523-0
Google Scholar
[15]
L.M. Galantucci, F. Lavecchia and G. Percoco, Experimental study aiming to enhance the surface finish of fused deposition modeled parts, CIRP Annals - Manufacturing Technology 58 2010 189-92.
DOI: 10.1016/j.cirp.2009.03.071
Google Scholar
[16]
P.F. Jacobs, Stereolithography 1993: epoxy resins, improved accuracy & investment casting, Proceedings of 4th International Conference on Rapid Prototyping, Dayton, OH, June 14-17 1993 249-262.
Google Scholar